login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117120
a(1)=1. a(n) is smallest positive integer not occurring earlier in the sequence where a(n) is congruent to -1 (mod a(n-1)).
11
1, 2, 3, 5, 4, 7, 6, 11, 10, 9, 8, 15, 14, 13, 12, 23, 22, 21, 20, 19, 18, 17, 16, 31, 30, 29, 28, 27, 26, 25, 24, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49, 48, 95, 94, 93, 92, 91, 90, 89, 88, 87
OFFSET
1,2
COMMENTS
Sequence is a permutation of the positive integers.
The permutation is self-inverse. Except for fixed points 1, 2, 3 it consists completely of 2-cycles: (4,5), (6,7), (8,11), (9,10), (12,15), (13,14), (16,23), (17,22), ..., (24,31), ..., (32,47), ... . - Klaus Brockhaus
The permutation transforms enumeration system of positive irreducible fractions A071766/A229742 (HCS) into enumeration system A245325/A245326, and vice versa. - Yosu Yurramendi, Jun 09 2015
A092569(a(n)) = a(A092569(n)), n > 0.
A258746(a(n)) = a(A258746(n)), n > 0.
A258996(a(n)) = a(A258996(n)), n > 0.
A054429(a(n)) = a(A054429(n)), n > 0.
a(n) = A054429(A063946(n)) = A063946(A054429(n)), n > 0. - Yosu Yurramendi, Mar 23 2017
FORMULA
For n >= 2: If a(n-1) = 2^m, m=positive integer, then a(n)= 2^(m+1)-1. If a(n-1) = 3*2^m, m= nonnegative integer, then a(n) = 3*2^(m+1)-1. Otherwise, a(n) = a(n-1) -1.
For n >= 2: a(2*n) = 2*a(n)+1, a(2*n+1) = 2*a(n). - Yosu Yurramendi, Jun 08 2015
MAPLE
A[1]:= 1: A[2]:= 2: B[1]:= 0: B[2]:= 0:
for n from 3 to 100 do
for m from A[n-1]-1 by A[n-1] while assigned(B[m]) do od:
A[n]:= m;
B[m]:= 0;
od:
seq(A[n], n=1..100); # Robert Israel, Jun 09 2015
MATHEMATICA
f[n_] := Block[{a = {1}, i, k}, Do[k = 1; While[Or[Mod[k, a[[i - 1]]] != a[[i - 1]] - 1, MemberQ[a, k]], k++]; AppendTo[a, k], {i, 2, n}]; a]; f@ 120 (* Michael De Vlieger, Jun 11 2015 *)
A[n_]:= If[n<4, n, If[EvenQ[n], 2A[n/2] + 1, 2A[(n - 1)/2]]]; Table[A[n], {n, 100}] (* Indranil Ghosh, Mar 21 2017 *)
f[lst_List] := Block[{k = 2, m = lst[[-1]]}, While[ MemberQ[lst, k] || 1 + Mod[k, m] != m, k++]; Append[lst, k]]; Nest[f, {1}, 70] (* Robert G. Wilson v, Jan 22 2018 *)
PROG
(R)
a <- 1:3 # If it were c(1, 3, 2), it would be A054429
maxn <- 50 # by choice
#
for(n in 2:maxn){
a[2*n ] <- 2*a[n]+1
a[2*n+1] <- 2*a[n]
}
#
a
# Yosu Yurramendi, Jun 08 2015
(PARI) A(n) = if(n<4, n, if(n%2, 2*A(n\2), 2*A(n/2)+1));
for(n=1, 50, print1(A(n), ", ")) \\ Indranil Ghosh, Mar 21 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Leroy Quet, Apr 19 2006
EXTENSIONS
More terms from Klaus Brockhaus
STATUS
approved