The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117119 Number of partitions of 2*n into two odd prime powers. 1
 1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 7, 8, 6, 9, 7, 6, 8, 7, 6, 8, 7, 7, 9, 8, 7, 9, 8, 7, 11, 9, 7, 12, 8, 7, 9, 9, 8, 10, 8, 9, 12, 11, 9, 12, 9, 8, 13, 9, 8, 13, 10, 11, 14, 11, 8, 13, 12, 10, 13, 9, 9, 16, 10, 11, 14, 10, 10, 15, 10, 9, 16, 12, 9, 16, 12, 11, 18 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Conjecture: For all n, a(n) > 0; a(n) > A002375(n). LINKS Eric Weisstein's World of Mathematics, Goldbach Conjecture Wikipedia, Goldbach's conjecture Wikipedia, Waring-Goldbach problem EXAMPLE a(1) = #{1+1} = 1; a(2) = #{1+3} = 1; a(3) = #{1+5, 3+3} = 2; a(20) = #{3+37, 3^2+31, 11+29, 13+3^3, 17+23} = 5; a(21) = #{1+41, 5+37, 11+31, 13+29, 17+5^2, 19+23} = 6. MAPLE isA061345 := proc(n)     if n = 1 then         true;     elif type(n, 'even') then         false;     elif nops(numtheory[factorset](n)) = 1 then         true;     else         false;     end if; end proc: A117119 := proc(n)     local a, j, i;     a := 0 ;     for i from 1 do         j := 2*n-i ;         if j < i then             break;         end if;         if isA061345(i) and isA061345(j) then             a := a+1 ;         end if;     end do:     a ; end proc: seq(A117119(n), n=1..60) ; # R. J. Mathar, Jul 09 2016 MATHEMATICA oppQ[n_] := n == 1 || OddQ[n] && PrimeNu[n] == 1; a[n_] := (k = 0; For[i = 1, True, i++, j = 2n - i; If[j < i, Break[]]; If[oppQ[i] && oppQ[j], k++] ]; k); Array[a, 100] (* Jean-François Alcover, Feb 13 2018 *) CROSSREFS Cf. A061345. Sequence in context: A196048 A176075 A256555 * A208280 A139141 A122953 Adjacent sequences:  A117116 A117117 A117118 * A117120 A117121 A117122 KEYWORD nonn AUTHOR Reinhard Zumkeller, Apr 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 13:25 EDT 2021. Contains 346373 sequences. (Running on oeis4.)