login
A208280
Number of distinct values in n-th row of Pascal's triangle mod 10 (A008975).
3
1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 6, 6, 4, 3, 4, 5, 6, 5, 5, 6, 7, 9, 3, 3, 4, 4, 5, 6, 4, 2, 4, 5, 4, 5, 5, 7, 7, 9, 5, 5, 7, 8, 8, 6, 6, 10, 7, 4, 4, 4, 6, 7, 6, 4, 5, 7, 7, 10, 6, 7, 6, 5, 6, 6, 6, 8, 7, 8, 7, 8, 7, 9, 5, 4, 5, 6, 7, 6, 5, 5, 6, 7, 7, 6
OFFSET
0,3
LINKS
EXAMPLE
Smallest numbers m such that a(m) = n, m = 1,..,9:
m | distinct terms in A008975(m,*) | a(m)
-----+----------------------------------+-------
0 | [1] | 1
2 | [1, 2] | 2
4 | [1, 4, 6] | 3
6 | [0, 1, 5, 6] | 4
17 | [0, 1, 6, 7, 8] | 5
12 | [0, 1, 2, 4, 5, 6] | 6
22 | [0, 1, 2, 3, 4, 5, 6] | 7
43 | [0, 1, 3, 4, 5, 6, 8, 9] | 8
23 | [0, 1, 3, 4, 5, 6, 7, 8, 9] | 9
47 | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | 10
PROG
(Haskell)
import Data.List (nub)
a208280 = length . nub . a008975_row
CROSSREFS
Sequence in context: A176075 A256555 A117119 * A139141 A122953 A259847
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Feb 25 2012
STATUS
approved