OFFSET
0,2
COMMENTS
For each term, the largest possible unit fraction is used.
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..11
Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. Solution published in Vol. 43, No. 4, September 2012, pp. 340-342.
David Eppstein, Algorithms for Egyptian Fractions.
Eric Weisstein's World of Mathematics, Egyptian Fraction.
EXAMPLE
a(4) = 145 because 1/145 is the largest unit fraction less than phi - 1/1 - 1/2 - 1/9.
MAPLE
v[0]:=1: for n from 1 to 10 do x:=ceil(1/((1+sqrt(5))/2-add(1/v[i], i=0..n-1))); while not x::integer do Digits:=2*Digits; x:=ceil(1/((1+sqrt(5))/2-add(1/v[i], i=0..n-1))) od; v[n]:=x; od: seq(v[i], i=0..8); # Paolo P. Lava, May 03 2018
MATHEMATICA
a = {1}; k = N[(Sqrt[5] - 1)/2, 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (* Artur Jasinski, Sep 22 2008 *)
PROG
(PARI) x = (1 + sqrt(5))/2 - 1;
f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));
n(x, k) = ceil(1/f(x, k - 1));
for(k = 0, 9, print1(if(k==0, 1, n(x, k)), ", ")) \\ Indranil Ghosh, Mar 27 2017
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Paolo P. Lava and Giorgio Balzarotti, Apr 19 2006
EXTENSIONS
Edited by Don Reble, Apr 21 2006
STATUS
approved