login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of an Egyptian Fraction for phi = (1+sqrt(5))/2.
27

%I #35 Jul 11 2022 08:37:06

%S 1,2,9,145,37986,2345721887,26943815937041299094,

%T 811625643619814151937413504618770581764,

%U 697120590223140234675813998970770820981012350673738243594006422610850113672220

%N Denominators of an Egyptian Fraction for phi = (1+sqrt(5))/2.

%C For each term, the largest possible unit fraction is used.

%H Amiram Eldar, <a href="/A117116/b117116.txt">Table of n, a(n) for n = 0..11</a>

%H Mohammad K. Azarian, <a href="http://www.jstor.org/stable/10.4169/college.math.j.42.4.329">Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958</a>, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330. <a href="http://www.jstor.org/stable/10.4169/college.math.j.43.4.337">Solution</a> published in Vol. 43, No. 4, September 2012, pp. 340-342.

%H David Eppstein, <a href="http://www.ics.uci.edu/%7Eeppstein/numth/egypt/intro.html">Algorithms for Egyptian Fractions</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EgyptianFraction.html">Egyptian Fraction</a>.

%H <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a>.

%e a(4) = 145 because 1/145 is the largest unit fraction less than phi - 1/1 - 1/2 - 1/9.

%p v[0]:=1: for n from 1 to 10 do x:=ceil(1/((1+sqrt(5))/2-add(1/v[i],i=0..n-1)));while not x::integer do Digits:=2*Digits; x:=ceil(1/((1+sqrt(5))/2-add(1/v[i],i=0..n-1))) od; v[n]:=x; od: seq(v[i],i=0..8); # _Paolo P. Lava_, May 03 2018

%t a = {1}; k = N[(Sqrt[5] - 1)/2, 1000]; Do[s = Ceiling[1/k]; AppendTo[a, s]; k = k - 1/s, {n, 1, 10}]; a (* _Artur Jasinski_, Sep 22 2008 *)

%o (PARI) x = (1 + sqrt(5))/2 - 1;

%o f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));

%o n(x, k) = ceil(1/f(x, k - 1));

%o for(k = 0, 9, print1(if(k==0, 1, n(x, k)), ", ")) \\ _Indranil Ghosh_, Mar 27 2017

%Y Cf. A001622.

%K nonn,frac

%O 0,2

%A _Paolo P. Lava_ and _Giorgio Balzarotti_, Apr 19 2006

%E Edited by _Don Reble_, Apr 21 2006