The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A233263 a(n) = prime(k), where k is such that (Sum_{j=1..k} prime(j)^12) / k is an integer. 1
 2, 157, 72673, 52472909, 85790059, 88573873, 16903607381, 4582951241047, 162717490461611, 1220077659512857 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(11) > 1352363608564489. - Bruce Garner, Aug 30 2021 LINKS FORMULA a(n) = prime(A131272(n)). EXAMPLE a(2) = 157, because 157 is the 37th prime and the sum of the first 37 primes^12 = 636533120636984811361212036 when divided by 37 equals 17203597855053643550303028 which is an integer. MAPLE A233263:=n->if type(add(ithprime(i)^12, i=1..n)/n, integer) then ithprime(n); fi; seq(A233263(n), n=1..100000); # Wesley Ivan Hurt, Dec 06 2013 MATHEMATICA t = {}; sm = 0; Do[sm = sm + Prime[n]^12; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) PROG (PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^12); s==0 \\ Charles R Greathouse IV, Nov 30 2013 (PARI) S=n=0; forprime(p=1, , (S+=p^12)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013 CROSSREFS Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. Sequence in context: A260886 A142006 A233575 * A124225 A159030 A064071 Adjacent sequences:  A233260 A233261 A233262 * A233264 A233265 A233266 KEYWORD nonn,more AUTHOR Robert Price, Dec 06 2013 EXTENSIONS a(8)-a(9) from Bruce Garner, Mar 23 2021 a(10) from Bruce Garner, Aug 30 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 15:15 EST 2021. Contains 349463 sequences. (Running on oeis4.)