OFFSET
1,1
COMMENTS
The primes correspond to indices n = 1, 281525, 1011881, 13721649, 309777093, 417800903, 12252701193, 27377813605, 37762351523 = A131263.
a(12) > 1878338967416897. - Paul W. Dyson, Mar 27 2021
a(13) > 3475385758524527. - Bruce Garner, Jan 10 2022
a(14) > 10765720281292199. - Paul W. Dyson, Aug 11 2022
a(14) > 18205684894350047. - Paul W. Dyson, Dec 16 2024
FORMULA
a(n) = prime(A131263(n)). - M. F. Hasler, Dec 01 2013
EXAMPLE
a(2) = 3974779, because 3974779 is the 281525th prime and the sum of the first 281525 primes^9 = 6520072223138145034616659509499972547782386874741800687550730350 when divided by 281525 equals 23159833844731888942781847116597007540297973092058611801974 which is an integer.
MATHEMATICA
t = {}; sm = 0; Do[sm = sm + Prime[n]^9; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^9); s==0 \\ Charles R Greathouse IV, Nov 30 2013
(PARI) S=n=0; forprime(p=1, , (S+=p^9)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
KEYWORD
nonn,more
AUTHOR
Robert Price, Dec 02 2013
EXTENSIONS
a(10) from Karl-Heinz Hofmann, Jan 24 2021
a(11) from Paul W. Dyson, Mar 27 2021
a(12) from Bruce Garner, Jan 10 2022
a(13) from Paul W. Dyson, Aug 11 2022
STATUS
approved