login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232962
Prime(m), where m is such that (Sum_{k=1..m} prime(k)^9) / m is an integer.
1
2, 3974779, 15681179, 250818839, 6682314181, 9143935289, 311484445891, 718930864213, 1004267651657, 7014674460791, 1745134691306711, 2853623691677477, 9950715071009107
OFFSET
1,1
COMMENTS
The primes correspond to indices n = 1, 281525, 1011881, 13721649, 309777093, 417800903, 12252701193, 27377813605, 37762351523 = A131263.
a(12) > 1878338967416897. - Paul W. Dyson, Mar 27 2021
a(13) > 3475385758524527. - Bruce Garner, Jan 10 2022
a(14) > 10765720281292199. - Paul W. Dyson, Aug 11 2022
a(14) > 18205684894350047. - Paul W. Dyson, Dec 16 2024
FORMULA
a(n) = prime(A131263(n)). - M. F. Hasler, Dec 01 2013
EXAMPLE
a(2) = 3974779, because 3974779 is the 281525th prime and the sum of the first 281525 primes^9 = 6520072223138145034616659509499972547782386874741800687550730350 when divided by 281525 equals 23159833844731888942781847116597007540297973092058611801974 which is an integer.
MATHEMATICA
t = {}; sm = 0; Do[sm = sm + Prime[n]^9; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^9); s==0 \\ Charles R Greathouse IV, Nov 30 2013
(PARI) S=n=0; forprime(p=1, , (S+=p^9)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013
CROSSREFS
Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n).
Sequence in context: A071066 A337368 A137601 * A158347 A273354 A352126
KEYWORD
nonn,more
AUTHOR
Robert Price, Dec 02 2013
EXTENSIONS
a(10) from Karl-Heinz Hofmann, Jan 24 2021
a(11) from Paul W. Dyson, Mar 27 2021
a(12) from Bruce Garner, Jan 10 2022
a(13) from Paul W. Dyson, Aug 11 2022
STATUS
approved