The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232962 Prime(m), where m is such that (Sum_{k=1..m} prime(k)^9) / m is an integer. 1
 2, 3974779, 15681179, 250818839, 6682314181, 9143935289, 311484445891, 718930864213, 1004267651657, 7014674460791, 1745134691306711, 2853623691677477, 9950715071009107 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The primes correspond to indices n = 1, 281525, 1011881, 13721649, 309777093, 417800903, 12252701193, 27377813605, 37762351523 = A131263. a(12) > 1878338967416897. - Paul W. Dyson, Mar 27 2021 a(13) > 3475385758524527. - Bruce Garner, Jan 10 2022 a(14) > 10765720281292199. - Paul W. Dyson, Aug 11 2022 LINKS Table of n, a(n) for n=1..13. OEIS Wiki, Sums of powers of primes divisibility sequences FORMULA a(n) = prime(A131263(n)). - M. F. Hasler, Dec 01 2013 EXAMPLE a(2) = 3974779, because 3974779 is the 281525th prime and the sum of the first 281525 primes^9 = 6520072223138145034616659509499972547782386874741800687550730350 when divided by 281525 equals 23159833844731888942781847116597007540297973092058611801974 which is an integer. MATHEMATICA t = {}; sm = 0; Do[sm = sm + Prime[n]^9; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *) PROG (PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^9); s==0 \\ Charles R Greathouse IV, Nov 30 2013 (PARI) S=n=0; forprime(p=1, , (S+=p^9)%n++||print1(p", ")) \\ M. F. Hasler, Dec 01 2013 CROSSREFS Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. Sequence in context: A071066 A337368 A137601 * A158347 A273354 A352126 Adjacent sequences: A232959 A232960 A232961 * A232963 A232964 A232965 KEYWORD nonn,more AUTHOR Robert Price, Dec 02 2013 EXTENSIONS a(10) from Karl-Heinz Hofmann, Jan 24 2021 a(11) from Paul W. Dyson, Mar 27 2021 a(12) from Bruce Garner, Jan 10 2022 a(13) from Paul W. Dyson, Aug 11 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 21:46 EDT 2024. Contains 374575 sequences. (Running on oeis4.)