login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229090
Numbers n such that sigma(n) mod n > antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisors of n, antisigma(n) = A024816(n) = sum of non-divisors of n.
5
2, 8, 10, 12, 15, 16, 21, 24, 30, 32, 42, 44, 45, 50, 52, 60, 63, 64, 68, 75, 76, 80, 92, 99, 105, 110, 116, 117, 124, 126, 128, 130, 135, 136, 140, 144, 147, 148, 150, 152, 153, 154, 160, 164, 165, 168, 170, 171, 172, 182, 184, 188, 189, 190, 195, 198, 200
OFFSET
1,1
COMMENTS
Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n) > 0.
Complement of union A229088 and A229089 with respect to A000027, where A229088 = numbers n such that sigma(n) mod n = antisigma(n) mod n, A229089 = numbers n such that sigma(n) mod n < antisigma(n) mod n.
LINKS
EXAMPLE
Number 12 is in sequence because sigma(12) mod 12 = 28 mod 12 = 4 > antisigma(12) mod 12 = 50 mod 12 = 2.
MATHEMATICA
smQ[n_]:=Module[{sig=DivisorSigma[1, n]}, Mod[sig, n]>Mod[(n(n+1))/2-sig, n]]; Select[Range[200], smQ] (* Harvey P. Dale, Dec 23 2013 *)
CROSSREFS
Cf. A000203 (sigma(n)), A024816 (antisigma(n)).
Cf. A054024 (sigma(n) mod n), A229110 (antisigma(n) mod n).
Sequence in context: A084124 A081693 A022298 * A265670 A297999 A287088
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 24 2013
STATUS
approved