login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229087
a(n) = sigma(n) mod n - antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.
5
0, 1, -1, 0, -3, -3, -5, 2, -1, 1, -9, 2, -11, -1, 3, 6, -15, -3, -17, -6, 1, -5, -21, 12, -13, -7, -1, -14, -27, 9, -29, 14, -3, -11, -9, -16, -35, -13, -5, 0, -39, 3, -41, 14, 21, -17, -45, -16, -33, 11, -9, 14, -51, -3, -21, -12, -11, -23, -57, 6, -59, -25
OFFSET
1,5
COMMENTS
Sequence contains anomalous increased frequency of values 14 (see A229115), a(n) = 14 for n = 32, 44, 52, 68, 76, 92, ... ).
LINKS
FORMULA
a(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n).
EXAMPLE
For n = 32; a(32 ) = sigma(32) mod 32 - antisigma(32) mod 32 = 63 mod 32 - 465 mod 32 = 31 - 17 = 14.
CROSSREFS
Cf. A000203 (sigma(n)), A024816 (antisigma(n)).
Cf. A054024 (sigma(n) mod n), A229110(antisigma(n) mod n).
Cf. A229088 (numbers n such that sigma(n) mod n = antisigma(n) mod n).
Cf. A229089 (numbers n such that sigma(n) mod n < antisigma(n) mod n).
Cf. A229090 (numbers n such that sigma(n) mod n > antisigma(n) mod n).
Sequence in context: A209389 A337544 A105104 * A142961 A348298 A101777
KEYWORD
sign
AUTHOR
Jaroslav Krizek, Oct 24 2013
STATUS
approved