login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229088
Numbers k such that sigma(k) mod k = antisigma(k) mod k, where sigma(k) = A000203(k) = sum of divisors of k, antisigma(k) = A024816(k) = sum of non-divisors of k.
5
1, 4, 40, 224, 360, 2016, 47616, 174592, 293760, 524160, 1571328, 1782144, 3485664, 134209536, 282977280, 492101632, 746444160, 1459956960, 1684126080, 1716728832, 4428914688, 27298252800, 41233360896, 376591138560, 719045268480, 1622308746240
OFFSET
1,2
COMMENTS
Numbers k such that A229087(k) = A000203(k) mod k - A024816(k) mod k = A054024(k) - A229110(k) = 0.
Complement of union A229089 and A229090 with respect to A000027; where A229089 = numbers k such that sigma(k) mod k < antisigma(k) mod k, A229090 = numbers k such that sigma(k) mod k > antisigma(k) mod k.
719045268480 and 1622308746240 are also terms. - Donovan Johnson, Oct 25 2013
If a number m is in this sequence and k(m) = A054024(m)/m = A229110(m)/m then k(m) = 0 for odd m (for number 1 and eventually odd multiply-perfect numbers m > 1). Conjecture: k(m) = 1/4 or 3/4 for all even m. Sequence of values k(m): 0, 3/4, 1/4, 1/4, 1/4, 1/4, 3/4, 1/4, 3/4, 1/4, 1/4, 3/4, 3/4, 3/4, 3/4, 1/4, 3/4, 3/4, 3/4, 3/4, 1/4, 3/4, 3/4, ... . Value k(m) = 3/4 also for m = 719045268480 and 1622308746240. - Jaroslav Krizek, Jun 19 2014
Also, the denominator of sigma(k)/k (reduced to lowest terms) of the currently known terms, except 1, are all 4: 1, 7/4, 9/4, 9/4, 13/4, 13/4, 11/4, 9/4, 15/4, 17/4, 13/4, 15/4, 15/4, 11/4, 15/4, 9/4, 19/4, 19/4, 19/4, 15/4, 13/4, 19/4, 15/4. - Michel Marcus, Jun 21 2014
Conjecture: For k>1, numbers k such that GCD(sigma(k), k) = n/4. - Jaroslav Krizek, Sep 23 2014
EXAMPLE
40 is in sequence because sigma(40) mod 40 = 90 mod 40 = antisigma(40) mod 40 = 730 mod 40 = 10.
PROG
(PARI) for(n=1, 10^9, s=sigma(n); t=n*(n+1)/2; if(s%n==(t-s)%n, print1(n ", "))) /* Donovan Johnson, Oct 24 2013 */
CROSSREFS
Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n).
Sequence in context: A271286 A174644 A273310 * A270088 A115286 A119635
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 24 2013
EXTENSIONS
a(8)-a(23) from Donovan Johnson, Oct 24 2013
a(24)-a(26) from Jud McCranie, Oct 10 2023
STATUS
approved