login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115286
a(n) = (1/6)*(n^6+3*n^4+12*n^3+8*n^2).
1
0, 4, 40, 228, 960, 3200, 8904, 21560, 46848, 93420, 173800, 305404, 511680, 823368, 1279880, 1930800, 2837504, 4074900, 5733288, 7920340, 10763200, 14410704, 19035720, 24837608, 32044800, 40917500, 51750504, 64876140, 80667328, 99540760, 121960200
OFFSET
0,2
REFERENCES
Nick Baxter, The Burnside di-lemma: combinatorics and puzzle symmetry, in Tribute to a Mathemagician, Peters, 2005, pp. 199-210.
FORMULA
From Chai Wah Wu, Jun 05 2016: (Start)
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.
G.f.: 4*x*(1 + 3*x + 8*x^2 + 16*x^3 + 2*x^4)/(1 - x)^7. (End)
PROG
(Python)
A115286_list, m = [], [120, -300, 272, -96, 8, 0, 0]
for _ in range(1001):
A115286_list.append(m[-1])
for i in range(6):
m[i+1] += m[i] # Chai Wah Wu, Jun 05 2016
CROSSREFS
Sequence in context: A273310 A229088 A270088 * A119635 A367557 A283660
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 11 2006
STATUS
approved