login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (1/6)*(n^6+3*n^4+12*n^3+8*n^2).
1

%I #13 Jun 05 2016 02:05:32

%S 0,4,40,228,960,3200,8904,21560,46848,93420,173800,305404,511680,

%T 823368,1279880,1930800,2837504,4074900,5733288,7920340,10763200,

%U 14410704,19035720,24837608,32044800,40917500,51750504,64876140,80667328,99540760,121960200

%N a(n) = (1/6)*(n^6+3*n^4+12*n^3+8*n^2).

%D Nick Baxter, The Burnside di-lemma: combinatorics and puzzle symmetry, in Tribute to a Mathemagician, Peters, 2005, pp. 199-210.

%H Chai Wah Wu, <a href="/A115286/b115286.txt">Table of n, a(n) for n = 0..1000</a>

%F From _Chai Wah Wu_, Jun 05 2016: (Start)

%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 6.

%F G.f.: 4*x*(1 + 3*x + 8*x^2 + 16*x^3 + 2*x^4)/(1 - x)^7. (End)

%o (Python)

%o A115286_list, m = [], [120, -300, 272, -96, 8, 0, 0]

%o for _ in range(1001):

%o A115286_list.append(m[-1])

%o for i in range(6):

%o m[i+1] += m[i] # _Chai Wah Wu_, Jun 05 2016

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Apr 11 2006