login
A229115
Numbers n such that sigma(n) mod n - antisigma(n) mod n = 14, where sigma(n) = A000203(n) = sum of divisor of n, antisigma(n) = A024816(n) = sum of non-divisors of n.
2
32, 44, 52, 68, 76, 92, 116, 124, 144, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 508, 524, 548, 556, 596, 604, 628, 652, 668, 692, 716, 724, 764, 772, 788, 796, 844, 892, 908, 916, 932, 956, 964, 1004, 1028
OFFSET
1,1
COMMENTS
Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n) = 14.
Value 14 has in sequence A229087(n) anomalous increased frequency.
Subsequence of A229090 (numbers n such that sigma(n) mod n > antisigma(n) mod n).
EXAMPLE
Number 32 is in sequence because sigma(32) mod 32 - antisigma(32) mod 32 = 63 mod 32 - 465 mod 32 = 31 - 17 = 14.
PROG
(PARI) isok(n) = ((sigma(n) % n) - (n*(n+1)/2 - sigma(n)) % n) == 14; \\ Michel Marcus, Oct 31 2013
CROSSREFS
Cf. A000203 (sigma(n)), A024816 (antisigma(n)), A229110 (antisigma(n) mod n), A054024 (sigma(n) mod n), A229090.
Sequence in context: A303529 A167528 A269230 * A035112 A308765 A236324
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Oct 24 2013
STATUS
approved