The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A229116 G.f.: A(x) = exp( Sum_{n>=1} A((-1)^n*x)^n * x^n/n ). 1
 1, 1, 0, 1, 0, 2, 2, 9, 8, 38, 28, 154, 126, 676, 602, 3129, 2816, 14718, 13384, 70334, 65204, 342108, 321788, 1686698, 1602214, 8402492, 8051652, 42239764, 40797750, 214045640, 208136494, 1092138905, 1068176200, 5606018286, 5511336912, 28929594902, 28571895096, 150000016044 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,6 COMMENTS Compare to a g.f. involving the Catalan function C(x) = 1 + x*C(x)^2 (A000108): C(x) = exp( Sum_{n>=1} C(x)^n * x^n/n ). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..500 Vaclav Kotesovec, Recurrence (of order 14) FORMULA G.f. A(x) satisfies: (1) A(x) = sqrt( (1 - x^2*A(-x)^2)/(1 - x^2*A(x)^2) ) / (1 - x*A(-x)). (2) A(x) = 1/( (1 + x*A(x)) * A(-x) * (1 - x*A(-x)) ). (3) 1 + x*A(x) = 2 / (1 + A(-x)^2*(1 - x^2*A(-x)^2)). (4) A(x) = 1/(2*A(-x)*(1 - x*A(-x))) + A(-x)*(1 + x*A(-x))/2. a(n) ~ c * d^n/(sqrt(Pi)*n^(3/2)), where d = sqrt((37 + (182701 - 19488*sqrt(87))^(1/3) + (182701 + 19488*sqrt(87))^(1/3))/21) = 2.37234975879070748... is the root of the equation -256 + 32*d^2 - 37*d^4 + 7*d^6 = 0. If n is even then c = sqrt((522 - 19*174^(2/3)/(92133 - 9877*sqrt(87))^(1/3) - (174*(92133 - 9877*sqrt(87)))^(1/3))/1479) = 0.3620905463490063953... is the root of the equation 182*c^2 - 522*c^4 + 493*c^6 = 16. If n is odd then c = sqrt(((58*(29 - 3*sqrt(87)))^(1/3) + (58*(29 + 3*sqrt(87)))^(1/3))/29) = 0.8049267655440167596... is the root of the equation 29*c^6 - 6*c^2 = 4. - Vaclav Kotesovec, Sep 15 2013 EXAMPLE G.f.: A(x) = 1 + x + x^3 + 2*x^5 + 2*x^6 + 9*x^7 + 8*x^8 + 38*x^9 +... where log(A(x)) = A(-x)*x + A(x)^2*x^2/2 + A(-x)^3*x^3/3 + A(x)^4*x^4/4 + A(-x)^5*x^5/5 + A(x)^6*x^6/6 + A(-x)^7*x^7/7 +... Also, A(x)*(1 + x*A(x)) = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 18*x^7 + 30*x^8 + 76*x^9 + 124*x^10 + 308*x^11 + 514*x^12 +... where 1/(A(x)*(1 + x*A(x))) = A(-x)*(1 - x*A(-x)). PROG (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(k=1, n, subst(A, x, (-1)^k*x+x*O(x^n))^k*x^k/k))); polcoeff(A, n)} for(n=0, 50, print1(a(n), ", ")) (PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=sqrt( (1 + x*subst(A, x, -x))/((1 - x*subst(A, x, -x))*(1 - x^2*A^2)) +x*O(x^n))); polcoeff(A, n)} for(n=0, 50, print1(a(n), ", ")) CROSSREFS Cf. A157674. Sequence in context: A243597 A021439 A198423 * A346918 A203904 A104681 Adjacent sequences:  A229113 A229114 A229115 * A229117 A229118 A229119 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 18:19 EST 2021. Contains 349585 sequences. (Running on oeis4.)