|
|
A081693
|
|
Define two sequences by A_n = mex{A_i,B_i : 0 <= i < n}, B_n = B_{n-1} + (A_n-A_{n-1})(A_n-A_{n-1}+1), where the mex of a set is the smallest nonnegative integer not in the set. Sequence gives B_n. A_n is in A081692.
|
|
2
|
|
|
0, 2, 8, 10, 12, 14, 16, 22, 28, 34, 40, 46, 48, 50, 52, 54, 60, 62, 64, 66, 68, 74, 76, 78, 80, 82, 88, 90, 92, 94, 96, 102, 104, 106, 108, 110, 116, 122, 128, 134, 140, 142, 144, 146, 148, 154, 160, 166, 172, 178, 180, 182, 184, 186, 192, 198, 204, 210, 216, 218
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Conjecture: Except for the initial 0, this is the sequence of positions of 1 in the fixed point of the morphism 0->01, 1->0000; see A284683. - Clark Kimberling, April 13 2017
|
|
LINKS
|
Table of n, a(n) for n=0..59.
A. S. Fraenkel, Home Page
A. S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
|
|
MATHEMATICA
|
mex[{}]=0; mex[s_] := Complement[Range[0, 1+Max@@s], s][[1]]; A[0]=B[0]=0; A[n_] := A[n]=mex[Flatten[Table[{A[i], B[i]}, {i, 0, n-1}]]]; B[n_] := B[n]=B[n-1]+(A[n]-A[n-1])*(A[n]-A[n-1]+1); a := B
|
|
CROSSREFS
|
Apart from initial terms, complement of A081692. Cf. A081691.
Sequence in context: A032708 A282094 A084124 * A022298 A229090 A265670
Adjacent sequences: A081690 A081691 A081692 * A081694 A081695 A081696
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, Apr 02 2003
|
|
EXTENSIONS
|
More terms from Vladeta Jovovic, Apr 04 2003
|
|
STATUS
|
approved
|
|
|
|