OFFSET
0,2
COMMENTS
The sequence (a(n)) generated by the equation a(n) = a(1)*b(n) - a(0)*b(n-1) + n, with initial values as shown, includes duplicates; e.g. a(18) = a(19) = 52. If the duplicates are removed from (a(n)), the resulting sequence and (b(n)) are complementary. Conjectures:
(1) 0 <= a(k) - a(k-1) <= 6 for k>=1;
(2) if d is in {0,1,2,3,4,5,6}, then a(k) = a(k-1) + d for infinitely many k.
***
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..2000
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, so that a(2) = 8.
Complement: (b(n)) = (3,4,5,6,7,9,11,13,14,15,17, ...)
MATHEMATICA
mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;
a[n_] := a[1]*b[n] - a[0]*b[n - 1] + n;
Table[{a[n], b[n + 1] = mex[Flatten[Map[{a[#], b[#]} &, Range[0, n]]], b[n - 0]]}, {n, 2, 3000}];
Table[a[n], {n, 0, 150}] (* A297999 *)
Table[b[n], {n, 0, 150}] (* A298110 *)
(* Peter J. C. Moses, Jan 16 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 09 2018
STATUS
approved