login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298000 Solution of the complementary equation a(n) = a(1)*b(n) - a(0)*b(n-1) + 2*n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, and (b(n)) is the increasing sequence of positive integers not in (a(n)).  See Comments. 8
1, 2, 10, 13, 16, 19, 22, 27, 29, 34, 36, 41, 43, 48, 50, 55, 57, 60, 63, 68, 72, 74, 77, 80, 85, 89, 91, 94, 97, 102, 106, 108, 111, 114, 119, 123, 125, 128, 131, 136, 140, 142, 147, 149, 154, 156, 159, 162, 167, 169, 172, 177, 181, 183, 188, 190, 195, 197 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values.

Conjectures:  a(n) - (2 +sqrt(2))*n < 4 for n >= 1.  Guide to related sequences having initial values a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, b(2) = 5, where (b(n)) is the increasing sequence of positive integers not in (a(n)):

***

a(n) = a(1)*b(n) - a(0)*b(n-1) + n     (a(n)) = A297999; (b(n)) = A298110

a(n) = a(1)*b(n) - a(0)*b(n-1) + 2*n   (a(n)) = A298000; (b(n)) = A298111

a(n) = a(1)*b(n) - a(0)*b(n-1) + 3*n   (a(n)) = A298001; (b(n)) = A298112

a(n) = a(1)*b(n) - a(0)*b(n-1) + 4*n   (a(n)) = A298002; (b(n)) = A298113

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..10000

EXAMPLE

a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 10.

Complement: (b(n)) = (3,4,5,6,8,9,11,12,14,15,17,18,20,...)

MATHEMATICA

a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4; b[2] = 5;

a[n_] := a[n] = a[1]*b[n] - a[0]*b[n - 1] + 2 n;

j = 1; While[j < 100, k = a[j] - j - 1;

While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k

Table[a[n], {n, 0, k}]  (* A298000 *)

CROSSREFS

Cf. A297826, A297836, A297837.

Sequence in context: A177856 A296220 A297835 * A058216 A297998 A037386

Adjacent sequences:  A297997 A297998 A297999 * A298001 A298002 A298003

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Feb 04 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 19:12 EST 2021. Contains 340411 sequences. (Running on oeis4.)