login
A297835
Solution of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n + 1, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
2
1, 2, 10, 13, 16, 19, 22, 25, 30, 32, 37, 39, 44, 46, 51, 53, 58, 60, 65, 67, 70, 73, 78, 82, 84, 87, 90, 95, 99, 101, 104, 107, 112, 116, 118, 121, 124, 129, 133, 135, 138, 141, 146, 150, 152, 155, 158, 163, 167, 169, 174, 176, 181, 183, 186, 189, 194, 196
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A297830 for a guide to related sequences.
Conjecture: a(n) - (2 +sqrt(2))*n < 7 for n >= 1.
LINKS
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 10.
Complement: (b(n)) = (3,4,6,7,8,9,11,12,14,15,17,18,20,...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + 2 n + 1;
j = 1; While[j < 100, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k
Table[a[n], {n, 0, k}] (* A297835 *)
CROSSREFS
Sequence in context: A343476 A343477 A296220 * A298000 A058216 A297998
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 04 2018
STATUS
approved