login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297837
Solution of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 4*n, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments.
7
1, 2, 13, 18, 23, 28, 33, 38, 43, 48, 53, 60, 64, 69, 74, 81, 85, 90, 95, 102, 106, 111, 116, 123, 127, 132, 137, 144, 148, 153, 158, 165, 169, 174, 179, 186, 190, 195, 200, 207, 211, 216, 221, 228, 232, 237, 242, 247, 252, 259, 263, 268, 275, 279, 284, 289
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. For a guide to related sequences, see A297830.
Conjecture: a(n) - (3 + sqrt(5))*n < 3 for n >= 1.
LINKS
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 13.
Complement: (b(n)) = (3,4,5,6,7,8,9,10,11,12,14,15,16,17,19,20,...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + 4 n;
j = 1; While[j < 100, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k
Table[a[n], {n, 0, k}] (* A297836 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 04 2018
STATUS
approved