The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A297834 Solution of the complementary equation a(n) = a(1)*b(n-1) - a(0)*b(n-2) + 2*n - 4, where a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, and (b(n)) is the increasing sequence of positive integers not in (a(n)). See Comments. 3
1, 2, 5, 8, 12, 17, 19, 22, 27, 29, 32, 35, 40, 44, 46, 51, 53, 56, 59, 64, 68, 70, 75, 77, 82, 84, 87, 90, 95, 97, 100, 105, 109, 111, 114, 117, 122, 126, 128, 133, 135, 140, 142, 145, 148, 153, 155, 158, 163, 167, 169, 172, 175, 180, 184, 186, 189, 192 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A297830 for a guide to related sequences.
Conjecture: -3 < a(n) - (2 +sqrt(2))*n <= 1 for n >= 1.
LINKS
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4, so that a(2) = 5.
Complement: (b(n)) = (3,4,6,7,9,10,11,13,14,15,16,18,20,...)
MATHEMATICA
a[0] = 1; a[1] = 2; b[0] = 3; b[1] = 4;
a[n_] := a[n] = a[1]*b[n - 1] - a[0]*b[n - 2] + 2 n - 4;
j = 1; While[j < 100, k = a[j] - j - 1;
While[k < a[j + 1] - j + 1, b[k] = j + k + 2; k++]; j++]; k
Table[a[n], {n, 0, k}] (* A297834 *)
CROSSREFS
Sequence in context: A174605 A108577 A272719 * A036789 A330188 A214047
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 04 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 00:20 EDT 2024. Contains 372900 sequences. (Running on oeis4.)