

A191765


Integers that are a sum of two nonzero triangular numbers and also the sum of two nonzero square numbers.


1



2, 13, 18, 20, 25, 29, 34, 37, 58, 61, 65, 72, 73, 90, 97, 100, 101, 106, 130, 136, 137, 146, 148, 157, 160, 164, 169, 181, 193, 200, 202, 205, 208, 218, 225, 226, 232, 234, 241, 244, 245, 265, 272, 274, 277, 281, 288, 289, 298, 306, 328, 340, 346, 353, 370, 373, 388, 389, 400
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS



LINKS

P. A. Piza, G. W. Walker and C. M. Sandwick, Sr, Problem 4425, The American Mathematical Monthly, Vol. 59, No. 6, (June  July 1952), pp. 417419.


EXAMPLE

25 is the sum of two nonzero triangular numbers: 10 + 15, and of two nonzero squares: 9 + 16; so 25 is in the sequence.
9 is the sum of two nonzero triangular numbers: 3 + 6, but can be represented as the sum of two squares only using zero: 0 + 9; so 9 is not in the sequence.


MATHEMATICA

data=Length[Reduce[a^2+b^2==1/2 c (c+1)+1/2 d(d+1)== # && a>0 && b>0 && c>0 && d>0, {a, b, c, d}, Integers]] &/@Range[400]; DeleteCases[Table[If[data[[k]]>0, k, 0], {k, 1, Length[data]}], 0]


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



