login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that sigma(n) mod n > antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisors of n, antisigma(n) = A024816(n) = sum of non-divisors of n.
5

%I #14 Oct 02 2020 16:25:34

%S 2,8,10,12,15,16,21,24,30,32,42,44,45,50,52,60,63,64,68,75,76,80,92,

%T 99,105,110,116,117,124,126,128,130,135,136,140,144,147,148,150,152,

%U 153,154,160,164,165,168,170,171,172,182,184,188,189,190,195,198,200

%N Numbers n such that sigma(n) mod n > antisigma(n) mod n, where sigma(n) = A000203(n) = sum of divisors of n, antisigma(n) = A024816(n) = sum of non-divisors of n.

%C Numbers n such that A229087(n) = A000203(n) mod n - A024816(n) mod n = A054024(n) - A229110(n) > 0.

%C Complement of union A229088 and A229089 with respect to A000027, where A229088 = numbers n such that sigma(n) mod n = antisigma(n) mod n, A229089 = numbers n such that sigma(n) mod n < antisigma(n) mod n.

%H Jaroslav Krizek, <a href="/A229090/b229090.txt">Table of n, a(n) for n = 1..10000</a>

%e Number 12 is in sequence because sigma(12) mod 12 = 28 mod 12 = 4 > antisigma(12) mod 12 = 50 mod 12 = 2.

%t smQ[n_]:=Module[{sig=DivisorSigma[1,n]},Mod[sig,n]>Mod[(n(n+1))/2-sig,n]]; Select[Range[200],smQ] (* _Harvey P. Dale_, Dec 23 2013 *)

%Y Cf. A000203 (sigma(n)), A024816 (antisigma(n)).

%Y Cf. A054024 (sigma(n) mod n), A229110 (antisigma(n) mod n).

%K nonn

%O 1,1

%A _Jaroslav Krizek_, Oct 24 2013