login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227168
a(n) = gcd(2*n, n*(n+1)/2)^2.
1
1, 1, 36, 4, 25, 9, 196, 16, 81, 25, 484, 36, 169, 49, 900, 64, 289, 81, 1444, 100, 441, 121, 2116, 144, 625, 169, 2916, 196, 841, 225, 3844, 256, 1089, 289, 4900, 324, 1369, 361, 6084, 400
OFFSET
1,3
COMMENTS
a(n) is defined as A062828(n)^2 for n >= 1. If we extend the sequence to n=0 and negative n by use of the recurrence that relates a(n) to a(n+12), a(n+8) and a(n+4), we obtain a(0)=0, a(-1)=4 and a(-n) = A176743(n-2)^2 for n >= 2.
Define c(n) = a(n+2) - a(n-2) for c >= 0. Because a(n) is a shuffle of three interleaved 2nd-order polynomials, c(n) is a shuffle of three interleaved 1st-order polynomials: c(n) = 4* A062828(n)*(periodically repeated 1, 8, 1, 1).
The sequence a(n) is case p=0 of the family A062828(n)*A062828(n+p):
0, 1, 1, 36, 4, 25, 9, 196, ... = a(n).
0, 1, 6, 12, 10, 15, 42, 56, ... = A130658(n)*A000217(n) = A177002(n-1)*A064038(n+1).
0, 6, 2, 30, 6, 70, 12, 126, ... = 2*A198148(n)
0, 2, 5, 18, 28, 20, 27, 70, ... = A177002(n+2)*A160050(n+1) = A014695(n+2)*A000096(n).
FORMULA
a(n) = A062828(n)^2.
a(4n) = (4*n+1)^2; a(2n+1) = (n+1)^2; a(4n+2) = 4*(4*n+3)^2.
a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).
a(n) * (period 4: repeat 4, 1, 1, 4) = A061038(n).
A005565(n-3) = a(n+1) * A061037(n). - Corrected by R. J. Mathar, Jul 25 2013
a(n) = A130658(n-1)^2 * A181318(n). - Corrected by R. J. Mathar, Aug 01 2013
G.f.: -x*(1 + x + 36*x^2 + 4*x^3 + 22*x^4 + 6*x^5 + 88*x^6 + 4*x^7 + 9*x^8 + x^9 + 4*x^10) / ( (x-1)^3*(1+x)^3*(x^2+1)^3 ). - R. J. Mathar, Jul 20 2013
Sum_{n>=1} 1/a(n) = 47*Pi^2/192 + 3*G/8, where G is Catalan's constant (A006752). - Amiram Eldar, Aug 21 2022
MAPLE
A227168 := proc(n)
A062828(n)^2 ;
end proc: # R. J. Mathar, Jul 25 2013
MATHEMATICA
a[n_] := GCD[2*n, n*(n + 1)/2]^2; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 03 2013 *)
PROG
(PARI) a(n)=if(n%2, n*if(n%4>2, 2, 1), n/2)^2 \\ Charles R Greathouse IV, Jul 07 2013
(Magma) [GCD(2*n, n*(n+1)/2)^2: n in [1..50]]; // G. C. Greubel, Sep 20 2018
KEYWORD
nonn,easy,less
AUTHOR
Paul Curtz, Jul 03 2013
STATUS
approved