OFFSET
1,1
COMMENTS
An indecomposable integer Heronian triangle that is not Pythagorean cannot be decomposed into two separate Pythagorean triangles because it has no integer altitudes.
See comments in A227003 about the Mathematica program below to ensure that all primitive Heronian areas up to 1320 are captured.
LINKS
EXAMPLE
a(2) = 126 as this is the second smallest area of an indecomposable non-Pythagorean primitive Heronian triangle. The triple is (5,51,52).
MATHEMATICA
nn=1320; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s]&&GCD[a, b, c]==1, area2=s(s-a)(s-b)(s-c); If[area2>0 && IntegerQ[Sqrt[area2]] && !IntegerQ[2Sqrt[area2]/a] && !IntegerQ[2Sqrt[area2]/b] && !IntegerQ[2Sqrt[area2]/c], AppendTo[lst, Sqrt[area2]]]], {a, 3, nn}, {b, a}, {c, b}]; Sort@Select[lst, #<=nn &] (* using T. D. Noe's program A083875 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, Jul 03 2013
EXTENSIONS
Name clarified by Frank M Jackson, Mar 17 2014
STATUS
approved