login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225767
Least k>0 such that k^5+n is prime, or 0 if k^5+n is never prime.
3
0, 1, 1, 8, 1, 2, 1, 4, 3, 2, 1, 2, 1, 6, 3, 2, 1, 6, 1, 10, 3, 2, 1, 14, 7, 4, 3, 2, 1, 2, 1, 22, 0, 8, 3, 2, 1, 4, 3, 2, 1, 2, 1, 10, 5, 4, 1, 2, 13, 10, 3, 2, 1, 6, 17, 12, 5, 2, 1, 12, 1, 12, 5, 4, 3, 2, 1, 4, 3, 2, 1, 2, 1, 4, 3, 2, 7, 2, 1, 4, 63, 2, 1, 18, 5, 4, 11, 32, 1, 14, 11, 6, 5, 4, 3, 2, 1, 6, 11, 2
OFFSET
0,4
COMMENTS
See A225768 for motivation and references.
By the theorem of Brillhart, Filaseta and Odlyzko (see link), if a(n) > n > 1 then x^5 + n must be irreducible. If x^5 + n is irreducible, the Bunyakovsky conjecture implies a(n) is finite. - Robert Israel, Apr 25 2016
LINKS
J. Brillhart, M. Filaseta, A. Odlyzko, On an irreducibility theorem of A. Cohn. Canad. J. Math. 33(1981), 1055-1059.
EXAMPLE
a(3)=8 because 1^5+3, 2^5+3, ..., 7^5+3 are all composite, but 8^5+3=32771 is prime.
a(32)=0 because x^5+32 = (x + 2)(x^4 - 2x^3 + 4x^2 - 8x + 16) is composite for all integer values of x>0.
MAPLE
f:= proc(n) local x, k, F, nf, F1, C;
if irreduc(x^5+n) then
for k from 1+(n mod 2) by 2 do if isprime(k^5+n) then return k fi od
else
F:= factors(x^5+n)[2]; #
F1:= map(t -> t[1], F);
nf:= nops(F);
C:= map(t -> op(map(rhs@op, {isolve(t^2-1)})), F1);
for k in sort(convert(select(type, C, positive), list)) do
if isprime(k^5+n) then return k fi
od:
0
fi
end proc:
map(f, [$0..100]); # Robert Israel, Apr 25 2016
MATHEMATICA
{0, 1}~Join~Table[If[IrreduciblePolynomialQ[x^5 + n], SelectFirst[Range[1 + Mod[n, 2], 10^2, 2], PrimeQ[#^5 + n] &], 0], {n, 2, 120}] (* Michael De Vlieger, Apr 25 2016, Version 10 *)
PROG
(PARI) A225767(a, b=5)={#factor(x^b+a)~==1&for(n=1, 9e9, ispseudoprime(n^b+a)&return(n)); a==1 || print1("/*"factor(x^b+a)"*/")} \\ For illustrative purpose only. The polynomial is factored to avoid an infinite search loop when it is composite. But a factored polynomial can yield a prime when all factors but one equal 1. This happens for b=4, n=4, cf. A225766.
CROSSREFS
See A085099, A225765--A225770 for the k^2, k^3, ..., k^8 analogs.
Sequence in context: A271547 A010154 A109011 * A019763 A307506 A179050
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jul 25 2013
STATUS
approved