login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least k>0 such that k^5+n is prime, or 0 if k^5+n is never prime.
3

%I #19 Apr 26 2016 00:15:47

%S 0,1,1,8,1,2,1,4,3,2,1,2,1,6,3,2,1,6,1,10,3,2,1,14,7,4,3,2,1,2,1,22,0,

%T 8,3,2,1,4,3,2,1,2,1,10,5,4,1,2,13,10,3,2,1,6,17,12,5,2,1,12,1,12,5,4,

%U 3,2,1,4,3,2,1,2,1,4,3,2,7,2,1,4,63,2,1,18,5,4,11,32,1,14,11,6,5,4,3,2,1,6,11,2

%N Least k>0 such that k^5+n is prime, or 0 if k^5+n is never prime.

%C See A225768 for motivation and references.

%C By the theorem of Brillhart, Filaseta and Odlyzko (see link), if a(n) > n > 1 then x^5 + n must be irreducible. If x^5 + n is irreducible, the Bunyakovsky conjecture implies a(n) is finite. - _Robert Israel_, Apr 25 2016

%H Robert Israel, <a href="/A225767/b225767.txt">Table of n, a(n) for n = 0..10000</a>

%H J. Brillhart, M. Filaseta, A. Odlyzko, <a href="https://dx.doi.org/10.4153%2FCJM-1981-080-0">On an irreducibility theorem of A. Cohn</a>. Canad. J. Math. 33(1981), 1055-1059.

%e a(3)=8 because 1^5+3, 2^5+3, ..., 7^5+3 are all composite, but 8^5+3=32771 is prime.

%e a(32)=0 because x^5+32 = (x + 2)(x^4 - 2x^3 + 4x^2 - 8x + 16) is composite for all integer values of x>0.

%p f:= proc(n) local x,k,F,nf,F1,C;

%p if irreduc(x^5+n) then

%p for k from 1+(n mod 2) by 2 do if isprime(k^5+n) then return k fi od

%p else

%p F:= factors(x^5+n)[2]; #

%p F1:= map(t -> t[1],F);

%p nf:= nops(F);

%p C:= map(t -> op(map(rhs@op,{isolve(t^2-1)})),F1);

%p for k in sort(convert(select(type,C,positive),list)) do

%p if isprime(k^5+n) then return k fi

%p od:

%p 0

%p fi

%p end proc:

%p map(f, [$0..100]); # _Robert Israel_, Apr 25 2016

%t {0, 1}~Join~Table[If[IrreduciblePolynomialQ[x^5 + n], SelectFirst[Range[1 + Mod[n, 2], 10^2, 2], PrimeQ[#^5 + n] &], 0], {n, 2, 120}] (* _Michael De Vlieger_, Apr 25 2016, Version 10 *)

%o (PARI) A225767(a,b=5)={#factor(x^b+a)~==1&for(n=1,9e9,ispseudoprime(n^b+a)&return(n));a==1 || print1("/*"factor(x^b+a)"*/")} \\ For illustrative purpose only. The polynomial is factored to avoid an infinite search loop when it is composite. But a factored polynomial can yield a prime when all factors but one equal 1. This happens for b=4, n=4, cf. A225766.

%Y See A085099, A225765--A225770 for the k^2, k^3, ..., k^8 analogs.

%K nonn

%O 0,4

%A _M. F. Hasler_, Jul 25 2013