login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225768
Least k > 0 such that k^6 + n is prime, or 0 if k^6 + n is never prime.
6
0, 1, 1, 2, 1, 18, 1, 2, 0, 2, 1, 54, 1, 28, 3, 2, 1, 18, 1, 2, 399, 26, 1, 6, 5, 2, 21, 0, 1, 288, 1, 4, 3, 2, 105, 6, 1, 2, 33, 2, 1, 546, 1, 2, 3, 2, 1, 6, 35, 2, 51, 20, 1, 12, 5, 28, 9, 4, 1, 18, 1, 4, 63, 2, 0, 18, 1, 2, 3, 28, 1, 6, 1, 2, 15, 2, 35, 24, 1, 12, 3, 4, 1, 42, 115, 2, 111, 2, 1, 18, 91, 6, 3, 2, 3, 6, 1, 28, 3, 2
OFFSET
0,4
COMMENTS
Motivated by the "particularly poor polynomial" n^6+1091 (composite for n=1,...,3905) mentioned on Weisstein's page about prime generating polynomials.
We have a(n) = 0 if n is a cube n = g^3 with g > 1 because then k^6 + g^3 = (k^2 + g)*(k^4 - k^2*g + g^2), which can be prime only when n = g = 1. - T. D. Noe, Nov 18 2013
By the theorem of Brillhart, Filaseta and Odlyzko (see link), if a(n) > n > 1 then x^6 + n must be irreducible. If x^6 + n is irreducible, the Bunyakovsky conjecture implies a(n) is finite. - Robert Israel, Apr 25 2016
LINKS
J. Brillhart, M. Filaseta, and A. Odlyzko, On an irreducibility theorem of A. Cohn, Canadian Journal of Mathematics 33(1981), 1055-1059.
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
MAPLE
f:= proc(n) local exact, x, k, F, nf, F1, C;
iroot(n, 3, exact);
if exact and n > 1 then return 0 fi;
if irreduc(x^6+n) then
for k from 1+(n mod 2) by 2 do if isprime(k^6+n) then return k fi od
else
F:= factors(x^6+n)[2]; #
F1:= map(t -> t[1], F);
nf:= nops(F);
C:= map(t -> op(map(rhs@op, {isolve(t^2-1)})), F1);
for k in sort(convert(select(type, C, positive), list)) do
if isprime(k^6+n) then return k fi
od:
0
fi
end proc:
map(f, [$0..100]); # Robert Israel, Apr 25 2016
MATHEMATICA
{0, 1}~Join~Table[If[IrreduciblePolynomialQ[x^6 + n], SelectFirst[Range[1 + Mod[n, 2], 10^3, 2], PrimeQ[#^6 + n] &], 0], {n, 2, 120}] (* Michael De Vlieger, Apr 25 2016, Version 10 *)
PROG
(PARI) {(a, b=6)->#factor(x^b+a)~==1 & for(n=1, 9e9, ispseudoprime(n^b+a)&return(n)); a==1&return(1); print1("/*"a":", factor(x^b+a)"*/")} /* For illustrative purpose only. The polynomial x^6+a is factored to avoid an infinite loop when it is composite. But there could be x such that this is prime, when all factors but one are 1 (not for exponent b=6, but, e.g., x=4 for exponent b=4), see A225766. */
CROSSREFS
See A085099, A225765, A225767, A225769, A225770 for the k^2, k^3, ..., k^8 analogs.
Sequence in context: A013072 A012895 A013077 * A335024 A270927 A089512
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jul 25 2013
STATUS
approved