login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271547
Decimal expansion of Product_{p prime} (1+1/(2p))*sqrt(1-1/p), a constant related to the asymptotic average number of squares modulo n.
2
8, 1, 2, 1, 0, 5, 7, 1, 1, 1, 6, 3, 1, 2, 2, 5, 1, 1, 7, 0, 6, 2, 5, 0, 9, 6, 4, 5, 8, 1, 8, 8, 7, 1, 7, 6, 5, 6, 0, 5, 7, 7, 1, 0, 0, 4, 8, 3, 6, 6, 9, 9, 2, 4, 3, 6, 0, 9, 2, 1, 8, 2, 0, 0, 3, 7, 8, 0, 9, 4, 0, 6, 2, 0, 4, 2, 5, 3, 2, 2, 0, 7, 5, 5, 8, 0, 2, 5, 4, 0, 2, 3, 5, 0, 4, 0, 2, 9, 9, 8
OFFSET
0,1
LINKS
Steven R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
FORMULA
Equals exp(Sum_{n>=2} -( (-1)^n + 2^(n-1))*P(n)/(n*2^n), where P(n) is the prime zeta P function.
EXAMPLE
0.81210571116312251170625096458188717656057710048366992436092182...
MATHEMATICA
digits = 100; Exp[NSum[-( (-1)^n + 2^(n - 1))*PrimeZetaP[n]/(n* 2^n), {n, 2, Infinity}, NSumTerms -> 3 digits, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First
CROSSREFS
Sequence in context: A198830 A254244 A232068 * A010154 A109011 A225767
KEYWORD
nonn,cons
AUTHOR
STATUS
approved