login
A271549
Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.
0
1399, 2157763, 13034041, 38208649, 38502313, 41518651, 42745111, 48154147, 49435063, 53872447, 58981513, 75194563, 83037247, 86139409, 101533963, 106287019, 140778403, 144593431, 155554237, 166083133, 166650193, 189371671, 199865893, 201738379, 224472877, 240133753, 271331773
OFFSET
1,1
COMMENTS
The exponents of 10 are all prime (2,3,5,7,11,13,17).
EXAMPLE
p = 1399:
p+10^2 = 1499 (is prime).
p+10^3 = 2399 (is prime).
p+10^5 = 101399 (is prime).
p+10^7 = 10001399 (is prime).
p+10^11 = 100000001399 (is prime).
p+10^13 = 10000000001399 (is prime).
p+10^17 = 100000000000001399 (is prime).
MATHEMATICA
Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] && PrimeQ[# + 10^7] && PrimeQ[# + 10^11] && PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* Robert Price, Apr 10 2016 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ Altug Alkan, Apr 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Emre APARI, Apr 10 2016
EXTENSIONS
More terms from Altug Alkan, Apr 10 2016
STATUS
approved