login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271549 Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime. 0
1399, 2157763, 13034041, 38208649, 38502313, 41518651, 42745111, 48154147, 49435063, 53872447, 58981513, 75194563, 83037247, 86139409, 101533963, 106287019, 140778403, 144593431, 155554237, 166083133, 166650193, 189371671, 199865893, 201738379, 224472877, 240133753, 271331773 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The exponents of 10 are all prime (2,3,5,7,11,13,17).

LINKS

Table of n, a(n) for n=1..27.

EXAMPLE

p = 1399:

p+10^2  = 1499 (is prime).

p+10^3  = 2399 (is prime).

p+10^5  = 101399 (is prime).

p+10^7  = 10001399 (is prime).

p+10^11 = 100000001399 (is prime).

p+10^13 = 10000000001399 (is prime).

p+10^17 = 100000000000001399 (is prime).

MATHEMATICA

Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] &&  PrimeQ[# + 10^7] && PrimeQ[# + 10^11] &&  PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* Robert Price, Apr 10 2016 *)

PROG

(PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ Altug Alkan, Apr 10 2016

CROSSREFS

Cf. A000040, A002385, A015916, A023203, A271575.

Sequence in context: A015990 A065214 A336738 * A203918 A178271 A271579

Adjacent sequences:  A271546 A271547 A271548 * A271550 A271551 A271552

KEYWORD

nonn

AUTHOR

Emre APARI, Apr 10 2016

EXTENSIONS

More terms from Altug Alkan, Apr 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 07:26 EDT 2021. Contains 345126 sequences. (Running on oeis4.)