login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271549
Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.
0
1399, 2157763, 13034041, 38208649, 38502313, 41518651, 42745111, 48154147, 49435063, 53872447, 58981513, 75194563, 83037247, 86139409, 101533963, 106287019, 140778403, 144593431, 155554237, 166083133, 166650193, 189371671, 199865893, 201738379, 224472877, 240133753, 271331773
OFFSET
1,1
COMMENTS
The exponents of 10 are all prime (2,3,5,7,11,13,17).
EXAMPLE
p = 1399:
p+10^2 = 1499 (is prime).
p+10^3 = 2399 (is prime).
p+10^5 = 101399 (is prime).
p+10^7 = 10001399 (is prime).
p+10^11 = 100000001399 (is prime).
p+10^13 = 10000000001399 (is prime).
p+10^17 = 100000000000001399 (is prime).
MATHEMATICA
Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] && PrimeQ[# + 10^7] && PrimeQ[# + 10^11] && PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* Robert Price, Apr 10 2016 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ Altug Alkan, Apr 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Emre APARI, Apr 10 2016
EXTENSIONS
More terms from Altug Alkan, Apr 10 2016
STATUS
approved