login
A271575
Primes p such that p+10, p+100 and p+1000 are all prime.
2
13, 31, 97, 163, 181, 283, 409, 499, 709, 787, 811, 877, 1087, 1399, 1423, 1609, 1777, 1801, 1879, 2347, 2677, 2719, 3457, 3517, 3919, 4273, 4483, 5701, 6043, 6121, 6211, 6481, 6691, 7573, 8941, 9733, 9739, 10069, 10093, 10159, 10243, 10789, 11161, 11251, 11689, 12799, 12907
OFFSET
1,1
COMMENTS
Number of terms < 10^k: 0, 3, 12, 37, 159, 789, 3960, 21708, 129910, ..., . - Robert G. Wilson v, Jun 20 2018
LINKS
EXAMPLE
p=13; p+10=23 (is prime), p+100=113 (is prime), p+1000=1013 (is prime).
MAPLE
select(t -> isprime(t+1000) and isprime(t+100) and isprime(t+10) and isprime(t), [seq(i, i=7..20000, 6)]); # Robert Israel, Jun 20 2018
MATHEMATICA
Select[Prime[Range[10000]], PrimeQ[# + 10] && PrimeQ[# + 100] && PrimeQ[# + 1000] &] (* Robert Price, Apr 10 2016 *)
PROG
(PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+10) && isprime(p+100) && isprime(p+1000), print1(p, ", "))); \\ Michel Marcus, Apr 10 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Emre APARI, Apr 10 2016
STATUS
approved