login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.
0

%I #18 Apr 10 2016 19:29:49

%S 1399,2157763,13034041,38208649,38502313,41518651,42745111,48154147,

%T 49435063,53872447,58981513,75194563,83037247,86139409,101533963,

%U 106287019,140778403,144593431,155554237,166083133,166650193,189371671,199865893,201738379,224472877,240133753,271331773

%N Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.

%C The exponents of 10 are all prime (2,3,5,7,11,13,17).

%e p = 1399:

%e p+10^2 = 1499 (is prime).

%e p+10^3 = 2399 (is prime).

%e p+10^5 = 101399 (is prime).

%e p+10^7 = 10001399 (is prime).

%e p+10^11 = 100000001399 (is prime).

%e p+10^13 = 10000000001399 (is prime).

%e p+10^17 = 100000000000001399 (is prime).

%t Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] && PrimeQ[# + 10^7] && PrimeQ[# + 10^11] && PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* _Robert Price_, Apr 10 2016 *)

%o (PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ _Altug Alkan_, Apr 10 2016

%Y Cf. A000040, A002385, A015916, A023203, A271575.

%K nonn

%O 1,1

%A _Emre APARI_, Apr 10 2016

%E More terms from _Altug Alkan_, Apr 10 2016