login
Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.
0

%I #18 Apr 10 2016 19:29:49

%S 1399,2157763,13034041,38208649,38502313,41518651,42745111,48154147,

%T 49435063,53872447,58981513,75194563,83037247,86139409,101533963,

%U 106287019,140778403,144593431,155554237,166083133,166650193,189371671,199865893,201738379,224472877,240133753,271331773

%N Primes p such that p+10^2, p+10^3, p+10^5, p+10^7, p+10^11, p+10^13 and p+10^17 are all prime.

%C The exponents of 10 are all prime (2,3,5,7,11,13,17).

%e p = 1399:

%e p+10^2 = 1499 (is prime).

%e p+10^3 = 2399 (is prime).

%e p+10^5 = 101399 (is prime).

%e p+10^7 = 10001399 (is prime).

%e p+10^11 = 100000001399 (is prime).

%e p+10^13 = 10000000001399 (is prime).

%e p+10^17 = 100000000000001399 (is prime).

%t Select[Prime[Range[10^9]], PrimeQ[# + 10^2] && PrimeQ[# + 10^3] && PrimeQ[# + 10^5] && PrimeQ[# + 10^7] && PrimeQ[# + 10^11] && PrimeQ[# + 10^13] && PrimeQ[# + 10^17] &] (* _Robert Price_, Apr 10 2016 *)

%o (PARI) lista(nn) = forprime(p=2, nn, if (isprime(p+10^2) && isprime(p+10^3) && isprime(p+10^5) && isprime(p+10^7) && isprime(p+10^11) && isprime(p+10^13) && isprime(p+10^17), print1(p, ", "))); \\ _Altug Alkan_, Apr 10 2016

%Y Cf. A000040, A002385, A015916, A023203, A271575.

%K nonn

%O 1,1

%A _Emre APARI_, Apr 10 2016

%E More terms from _Altug Alkan_, Apr 10 2016