login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211780
a(n) = Sum_{d|n, d<n} d * tau(n / d), where tau = A000005 is the number of divisors.
3
0, 2, 2, 7, 2, 14, 2, 18, 9, 18, 2, 43, 2, 22, 20, 41, 2, 54, 2, 57, 24, 30, 2, 106, 13, 34, 31, 71, 2, 110, 2, 88, 32, 42, 28, 162, 2, 46, 36, 142, 2, 138, 2, 99, 81, 54, 2, 237, 17, 102, 44, 113, 2, 178, 36, 178, 48, 66, 2, 325, 2, 70, 99, 183, 40, 194, 2
OFFSET
1,2
COMMENTS
Numbers n such that n divides a(n) are given in A068978.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..27144 (first 1000 terms from Jaroslav Krizek)
FORMULA
a(n) = A007429(n) - n = A211779(n) + A000203(n) - n .
a(n) = (Sum_{d|n} A000203(d)) - n. - Antti Karttunen, Nov 13 2017
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^4/36 - 1 = 1.705808... . - Amiram Eldar, Jun 06 2024
EXAMPLE
For n = 12: Sum_{d|n, d<n} d * tau(n / d) = 1*6 + 2*4 + 3*3 + 4*2 + 6*2 = 43.
MATHEMATICA
Table[Sum[d*DivisorSigma[0, n/d], {d, Most[Divisors[n]]}], {n, 100}] (* T. D. Noe, Apr 27 2012 *)
PROG
(PARI) A211780(n) = sumdiv(n, d, sigma(d))-n; \\ Antti Karttunen, Nov 13 2017
(Python) A211780=lambda n:sum(sigma(d) for d in divisors(n, generator=True))-n
from sympy import divisor_sigma as sigma, divisors # M. F. Hasler, Jun 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 20 2012
EXTENSIONS
Name edited by M. F. Hasler, Jun 03 2024
STATUS
approved