login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211779
a(n) = Sum_{d_<n | n} sigma(d_<n), where d_<n = divisors of n that are less than n, sigma(x) = A000203(x).
7
0, 1, 1, 4, 1, 8, 1, 11, 5, 10, 1, 27, 1, 12, 11, 26, 1, 33, 1, 35, 13, 16, 1, 70, 7, 18, 18, 43, 1, 68, 1, 57, 17, 22, 15, 107, 1, 24, 19, 92, 1, 84, 1, 59, 48, 28, 1, 161, 9, 59, 23, 67, 1, 112, 19, 114, 25, 34, 1, 217, 1, 36, 58, 120, 21, 116, 1, 83, 29
OFFSET
1,4
COMMENTS
The numbers n < 1000 such that n divides a(n) are 4, 10, 42, and 90. (See A224488).
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..27144 (first 1000 terms from Jaroslav Krizek)
FORMULA
a(n) = A007429(n) - A000203(n) = A211780(n) - A000203(n) + n.
G.f.: sum(n>=1, A000203(n)*x^(2*n)/(1-x^n) ). - Mircea Merca, Feb 26 2014
a(n) = Sum_{d|n} A001065(d). - Antti Karttunen, Nov 13 2017
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/72 - Pi^2/12 = 0.530437... . - Amiram Eldar, Mar 17 2024
MATHEMATICA
Table[Sum[DivisorSigma[1, d], {d, Most[Divisors[n]]}], {n, 100}] (* T. D. Noe, Apr 26 2012 *)
PROG
(PARI) a(n)=sumdiv(n, d, sigma(d))-sigma(n) \\ Charles R Greathouse IV, Feb 19 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 20 2012
STATUS
approved