OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = Product_{i=1..omega(n)} (b_i+1)!^(tau(n)/(b_i+1)), where omega(n) is the number of distinct prime factors of n, tau(n) is the number of divisors of n, and n = p_1^(b_1)*p_2^(b_2)* ... *p_{omega(n)}^(b_{omega(n)}). - Anand Rao Tadipatri, Aug 04 2020
EXAMPLE
For n = 6: divisors of 6: 1, 2, 3, 6; tau(d): 1, 2, 2, 4; product _{d | n} tau(d) = 1*2*2*4 = 16, where tau = A000005.
MAPLE
A211776 := proc(n)
mul( A000005(d), d=numtheory[divisors](n)) ;
end proc:
seq(A211776(n), n=1..20) ; # R. J. Mathar, Feb 13 2019
MATHEMATICA
Table[Product[DivisorSigma[0, i], {i, Divisors[n]}], {n, 100}] (* T. D. Noe, Apr 26 2012 *)
a[1] = 1; a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, d = Times @@ (e + 1); Times @@ ((e + 1)!^(d/(e + 1)))]; Array[a, 100] (* using the Formula section, Amiram Eldar, Aug 04 2020 *)
PROG
(PARI)
A211776(n) = { my(m=1); fordiv(n, d, m *= numdiv(d)); m };
A211776(n) = prod(d=1, n, if((n % d), 1, numdiv(d)));
\\ Antti Karttunen, May 19 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 20 2012
STATUS
approved