login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211776
a(n) = Product_{d | n} tau(d).
12
1, 2, 2, 6, 2, 16, 2, 24, 6, 16, 2, 288, 2, 16, 16, 120, 2, 288, 2, 288, 16, 16, 2, 9216, 6, 16, 24, 288, 2, 4096, 2, 720, 16, 16, 16, 46656, 2, 16, 16, 9216, 2, 4096, 2, 288, 288, 16, 2, 460800, 6, 288, 16, 288, 2, 9216, 16, 9216, 16, 16, 2, 5308416, 2
OFFSET
1,2
LINKS
FORMULA
a(n) = Product_{i=1..omega(n)} (b_i+1)!^(tau(n)/(b_i+1)), where omega(n) is the number of distinct prime factors of n, tau(n) is the number of divisors of n, and n = p_1^(b_1)*p_2^(b_2)* ... *p_{omega(n)}^(b_{omega(n)}). - Anand Rao Tadipatri, Aug 04 2020
EXAMPLE
For n = 6: divisors of 6: 1, 2, 3, 6; tau(d): 1, 2, 2, 4; product _{d | n} tau(d) = 1*2*2*4 = 16, where tau = A000005.
MAPLE
A211776 := proc(n)
mul( A000005(d), d=numtheory[divisors](n)) ;
end proc:
seq(A211776(n), n=1..20) ; # R. J. Mathar, Feb 13 2019
MATHEMATICA
Table[Product[DivisorSigma[0, i], {i, Divisors[n]}], {n, 100}] (* T. D. Noe, Apr 26 2012 *)
a[1] = 1; a[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, d = Times @@ (e + 1); Times @@ ((e + 1)!^(d/(e + 1)))]; Array[a, 100] (* using the Formula section, Amiram Eldar, Aug 04 2020 *)
PROG
(PARI)
A211776(n) = { my(m=1); fordiv(n, d, m *= numdiv(d)); m };
A211776(n) = prod(d=1, n, if((n % d), 1, numdiv(d)));
\\ Antti Karttunen, May 19 2017
CROSSREFS
Cf. A000005, A001221, A007425 (Sum_{d | n} tau(d)).
Sequence in context: A098555 A057562 A102628 * A325248 A036655 A319356
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Apr 20 2012
STATUS
approved