login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325211
a(1) = 1; a(n) = Sum_{d|n, d<n} tau(n/d) * a(d), where tau = A000005.
1
1, 2, 2, 7, 2, 12, 2, 24, 7, 12, 2, 58, 2, 12, 12, 82, 2, 58, 2, 58, 12, 12, 2, 256, 7, 12, 24, 58, 2, 104, 2, 280, 12, 12, 12, 355, 2, 12, 12, 256, 2, 104, 2, 58, 58, 12, 2, 1072, 7, 58, 12, 58, 2, 256, 12, 256, 12, 12, 2, 652, 2, 12, 58, 956, 12, 104, 2, 58, 12, 104
OFFSET
1,2
FORMULA
G.f. A(x) satisfies: A(x) = x + Sum_{k>=2} tau(k) * A(x^k).
a(p) = 2, where p is prime.
MATHEMATICA
a[n_] := If[n == 1, n, Sum[If[d < n, DivisorSigma[0, n/d] a[d], 0], {d, Divisors[n]}]]; Table[a[n], {n, 1, 70}]
nmax = 70; A[_] = 0; Do[A[x_] = x + Sum[DivisorSigma[0, k] A[x^k], {k, 2, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
PROG
(PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n] = sumdiv(n, d, v[d]*numdiv(n/d))); v} \\ Andrew Howroyd, Sep 05 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 05 2019
STATUS
approved