login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211162
Sophie Germain 5-almost primes.
3
688, 1552, 3496, 4360, 5008, 6352, 6952, 7546, 7672, 9256, 9625, 9712, 10062, 10300, 10840, 11632, 11875, 12112, 12136, 12460, 12712, 13432, 13648, 13744, 13912, 14152, 14812, 14920, 15484, 16562, 17050, 17104, 17272, 17608, 17752, 18130, 18232, 18616, 18952, 19062, 19624, 19792, 21100, 21136, 21352
OFFSET
1,1
COMMENTS
Numbers n that are products of exactly 5 primes, such that 2*n + 1 are also products of exactly 5 primes. By analogy with A111153 Sophie Germain semiprimes: semiprimes n such that 2n+1 is also a semiprime; A111173 Sophie Germain 3-almost primes; A111176 Sophie Germain 4-almost primes.
From Zak Seidov, Jan 30 2013: (Start)
First integers n such that both n and 2n+1 are Sophie Germain 5-almost primes are: 54708, 103812, 111952, 113368, 117328, 134312, 159568, 160062, 165462, 199048, 205812.
First integers n such that n, 2n+1 and 4n+3 all are Sophie Germain 5-almost primes are: 159568, 301812, 431068, 444388, 564718, 1144468, 1420468, 1653162, 1687768, 1794568.
First integers n such that n, 2n+1, 4n+3 and 8n+7 all are Sophie Germain 5-almost primes are: 2991345, 4553367, 7760616, 9145318, 9332368, 12919266, 14283535, 14659746, 15144118.
First integers n such that n, 2n+1, 4n+3, 8n+7 and 16n+15 all are Sophie Germain 5-almost primes are: 15144118, 18515752, 41092024, 60406662, 71783890, 87353512, 94144212
First integers n such that n, 2n+1, 4n+3, 8n+7, 16n+15 and 32n+31 all are Sophie Germain 5-almost primes are: 211457337, 237572475, 245071092, 352015408, 415695462, 433833417.
First integers n such that n, 2n+1, 4n+3, 8n+7, 16n+15, 32n+31 and 64n+63 all are Sophie Germain 5-almost primes are: 433833417, 463078210, 648871975. (End)
LINKS
FORMULA
{n in A014614 such that 2*n + 1 is in A014614}.
EXAMPLE
a(1) = 688 because 688 = 2^4 * 43, and 2*688 + 1 = 1377 = 3^4 * 17.
MATHEMATICA
fQ[n_] := PrimeOmega[n] == 5 == PrimeOmega[2 n + 1]; Select[Range@ 100000, fQ] (* Robert G. Wilson v *)
PROG
(Magma) Is5primes:=func<i|&+[d[2]: d in Factorization(i)] eq 5>; [n: n in [2..22000] | Is5primes(n) and Is5primes(2*n+1)]; // Bruno Berselli, Jan 30 2013
(PARI) is(n)=bigomega(n)==5 && bigomega(2*n+1)==5 \\ Charles R Greathouse IV, Feb 01 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved