login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sophie Germain 5-almost primes.
3

%I #27 Sep 08 2022 08:46:02

%S 688,1552,3496,4360,5008,6352,6952,7546,7672,9256,9625,9712,10062,

%T 10300,10840,11632,11875,12112,12136,12460,12712,13432,13648,13744,

%U 13912,14152,14812,14920,15484,16562,17050,17104,17272,17608,17752,18130,18232,18616,18952,19062,19624,19792,21100,21136,21352

%N Sophie Germain 5-almost primes.

%C Numbers n that are products of exactly 5 primes, such that 2*n + 1 are also products of exactly 5 primes. By analogy with A111153 Sophie Germain semiprimes: semiprimes n such that 2n+1 is also a semiprime; A111173 Sophie Germain 3-almost primes; A111176 Sophie Germain 4-almost primes.

%C From _Zak Seidov_, Jan 30 2013: (Start)

%C First integers n such that both n and 2n+1 are Sophie Germain 5-almost primes are: 54708, 103812, 111952, 113368, 117328, 134312, 159568, 160062, 165462, 199048, 205812.

%C First integers n such that n, 2n+1 and 4n+3 all are Sophie Germain 5-almost primes are: 159568, 301812, 431068, 444388, 564718, 1144468, 1420468, 1653162, 1687768, 1794568.

%C First integers n such that n, 2n+1, 4n+3 and 8n+7 all are Sophie Germain 5-almost primes are: 2991345, 4553367, 7760616, 9145318, 9332368, 12919266, 14283535, 14659746, 15144118.

%C First integers n such that n, 2n+1, 4n+3, 8n+7 and 16n+15 all are Sophie Germain 5-almost primes are: 15144118, 18515752, 41092024, 60406662, 71783890, 87353512, 94144212

%C First integers n such that n, 2n+1, 4n+3, 8n+7, 16n+15 and 32n+31 all are Sophie Germain 5-almost primes are: 211457337, 237572475, 245071092, 352015408, 415695462, 433833417.

%C First integers n such that n, 2n+1, 4n+3, 8n+7, 16n+15, 32n+31 and 64n+63 all are Sophie Germain 5-almost primes are: 433833417, 463078210, 648871975. (End)

%H Vincenzo Librandi, <a href="/A211162/b211162.txt">Table of n, a(n) for n = 1..2000</a>

%F {n in A014614 such that 2*n + 1 is in A014614}.

%e a(1) = 688 because 688 = 2^4 * 43, and 2*688 + 1 = 1377 = 3^4 * 17.

%t fQ[n_] := PrimeOmega[n] == 5 == PrimeOmega[2 n + 1]; Select[Range@ 100000, fQ] (* _Robert G. Wilson v_ *)

%o (Magma) Is5primes:=func<i|&+[d[2]: d in Factorization(i)] eq 5>; [n: n in [2..22000] | Is5primes(n) and Is5primes(2*n+1)]; // _Bruno Berselli_, Jan 30 2013

%o (PARI) is(n)=bigomega(n)==5 && bigomega(2*n+1)==5 \\ _Charles R Greathouse IV_, Feb 01 2017

%Y Cf. A014614, A111153, A111173, A111176.

%K nonn

%O 1,1

%A _Jonathan Vos Post_ and _Robert G. Wilson v_, Jan 30 2013