login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211164
Number of compositions of n with at most one odd part.
2
1, 1, 1, 3, 2, 8, 4, 20, 8, 48, 16, 112, 32, 256, 64, 576, 128, 1280, 256, 2816, 512, 6144, 1024, 13312, 2048, 28672, 4096, 61440, 8192, 131072, 16384, 278528, 32768, 589824, 65536, 1245184, 131072, 2621440, 262144, 5505024, 524288, 11534336, 1048576, 24117248
OFFSET
0,4
FORMULA
G.f.: -(2*x^4-x^3-3*x^2+x+1)/(-4*x^4+4*x^2-1).
From Colin Barker, May 07 2016: (Start)
a(n) = 2^((n-7)/2+5/2) for n>0 and even.
a(n) = 2^((n-7)/2)*(2*n+6) for n>0 and odd.
a(n) = 4*a(n-2)-4*a(n-4) for n>4.
(End)
EXAMPLE
a(3) = 3: [3], [1,2], [2,1].
a(4) = 2: [4], [2,2].
a(5) = 8: [5], [3,2], [2,3], [1,4], [4,1], [1,2,2], [2,1,2], [2,2,1].
a(6) = 4: [6], [4,2], [2,4], [2,2,2].
a(8) = 8: [8], [4,4], [2,6], [6,2], [2,2,4], [4,2,2], [2,4,2], [2,2,2,2].
MAPLE
a:= n-> `if`(n<2, 1, 2^iquo(n-2, 2) *
`if`(irem(n, 2)=0, 1, iquo(n+3, 2))):
seq(a(n), n=0..60);
PROG
(PARI) Vec((1-x)^2*(1+x)*(1+2*x)/(1-2*x^2)^2 + O(x^50)) \\ Colin Barker, May 07 2016
CROSSREFS
Bisection gives: A011782 (even part), A001792 (odd part).
Cf. A208354.
Sequence in context: A162728 A127300 A129199 * A097018 A127541 A053219
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Jan 30 2013
STATUS
approved