Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 May 07 2016 02:53:49
%S 1,1,1,3,2,8,4,20,8,48,16,112,32,256,64,576,128,1280,256,2816,512,
%T 6144,1024,13312,2048,28672,4096,61440,8192,131072,16384,278528,32768,
%U 589824,65536,1245184,131072,2621440,262144,5505024,524288,11534336,1048576,24117248
%N Number of compositions of n with at most one odd part.
%H Alois P. Heinz, <a href="/A211164/b211164.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-4)
%F G.f.: -(2*x^4-x^3-3*x^2+x+1)/(-4*x^4+4*x^2-1).
%F From _Colin Barker_, May 07 2016: (Start)
%F a(n) = 2^((n-7)/2+5/2) for n>0 and even.
%F a(n) = 2^((n-7)/2)*(2*n+6) for n>0 and odd.
%F a(n) = 4*a(n-2)-4*a(n-4) for n>4.
%F (End)
%e a(3) = 3: [3], [1,2], [2,1].
%e a(4) = 2: [4], [2,2].
%e a(5) = 8: [5], [3,2], [2,3], [1,4], [4,1], [1,2,2], [2,1,2], [2,2,1].
%e a(6) = 4: [6], [4,2], [2,4], [2,2,2].
%e a(8) = 8: [8], [4,4], [2,6], [6,2], [2,2,4], [4,2,2], [2,4,2], [2,2,2,2].
%p a:= n-> `if`(n<2, 1, 2^iquo(n-2, 2) *
%p `if`(irem(n, 2)=0, 1, iquo(n+3, 2))):
%p seq(a(n), n=0..60);
%o (PARI) Vec((1-x)^2*(1+x)*(1+2*x)/(1-2*x^2)^2 + O(x^50)) \\ _Colin Barker_, May 07 2016
%Y Bisection gives: A011782 (even part), A001792 (odd part).
%Y Cf. A208354.
%K nonn,easy
%O 0,4
%A _Alois P. Heinz_, Jan 30 2013