login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210862
Triangle of coefficients of polynomials u(n,x) jointly generated with A210863; see the Formula section.
3
1, 2, 1, 3, 2, 2, 4, 6, 7, 3, 5, 15, 20, 16, 5, 6, 31, 57, 63, 37, 8, 7, 56, 153, 215, 184, 81, 13, 8, 92, 370, 684, 771, 513, 171, 21, 9, 141, 805, 2028, 2898, 2603, 1354, 351, 34, 10, 205, 1598, 5515, 10084, 11582, 8319, 3415, 703, 55, 11, 286, 2940
OFFSET
1,2
COMMENTS
Row n starts with n and ends with F(n), where F=A000045 (Fibonacci numbers).
Column 2: A056520
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+n-1)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...1
3...2....2
4...6....7....3
5...15...20...16...5
First three polynomials u(n,x): 1, 2 + x, 4 + 5x + 2x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 14;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + n - 1)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210862 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210863 *)
CROSSREFS
Sequence in context: A120933 A209756 A210795 * A298675 A365383 A144154
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 28 2012
STATUS
approved