

A120933


Triangle read by rows: T(n,k) is the number of binary words of length n for which the length of the maximal leading nondecreasing subword is k (1<=k<=n).


0



2, 1, 3, 2, 2, 4, 4, 4, 3, 5, 8, 8, 6, 4, 6, 16, 16, 12, 8, 5, 7, 32, 32, 24, 16, 10, 6, 8, 64, 64, 48, 32, 20, 12, 7, 9, 128, 128, 96, 64, 40, 24, 14, 8, 10, 256, 256, 192, 128, 80, 48, 28, 16, 9, 11, 512, 512, 384, 256, 160, 96, 56, 32, 18, 10, 12, 1024, 1024, 768, 512, 320
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Row sums are the powers of 2 (A000079). Sum(k*T(n,k), k=1..n)=3*2^nn3=A095151(n).


LINKS

Table of n, a(n) for n=1..71.


FORMULA

T(n,k)=k*2^(nk1) if k<n; T(n,n)=n+1. G=G(t,z)=(12z+tz^2)/[(12z)(1tz)^2]  1.


EXAMPLE

T(4,2)=4 because we have 0100,0101,1100 and 1101.
Triangle starts:
2;
1,3;
2,2,4;
4,4,3,5;
8,8,6,4,6;


MAPLE

T:=proc(n, k) if k<n then k*2^(nk1) elif k=n then n+1 else 0 fi end: for n from 1 to 13 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form;


CROSSREFS

Cf. A000079, A095151.
Sequence in context: A210553 A269456 A208906 * A209756 A210795 A210862
Adjacent sequences: A120930 A120931 A120932 * A120934 A120935 A120936


KEYWORD

nonn,tabl


AUTHOR

Emeric Deutsch, Jul 16 2006


STATUS

approved



