login
A210795
Triangle of coefficients of polynomials u(n,x) jointly generated with A210796; see the Formula section.
3
1, 2, 1, 3, 2, 2, 4, 5, 5, 3, 5, 8, 12, 9, 5, 6, 13, 22, 25, 17, 8, 7, 18, 38, 51, 51, 31, 13, 8, 25, 59, 98, 115, 101, 56, 21, 9, 32, 88, 166, 238, 248, 196, 100, 34, 10, 41, 124, 270, 438, 552, 520, 374, 177, 55, 11, 50, 170, 410, 762, 1090, 1234, 1064, 704
OFFSET
1,2
COMMENTS
Row n starts with n and ends with F(n), where F=A000045 (Fibonacci numbers).
Column 2: A000982
Column 3: A026035
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+2)*u(n-1,x)+(x-1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2...1
3...2...2
4...5...5....3
5...8...12...9...5
First three polynomials u(n,x): 1, 2 + x, 3 + 2x + 2x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + j)*v[n - 1, x] + c;
d[x_] := h + x; e[x_] := p + x;
v[n_, x_] := d[x]*u[n - 1, x] + e[x]*v[n - 1, x] + f;
j = 0; c = 1; h = 2; p = -1; f = 0;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210795 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210796 *)
CROSSREFS
Sequence in context: A208906 A120933 A209756 * A210862 A298675 A365383
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 26 2012
STATUS
approved