OFFSET
1,1
COMMENTS
Soundararajan states that, on average, there is one prime in the interval [k,k+log(k)] for any number k. Is there an upper limit to the number of primes in such an interval? Not if the prime k-tuple conjecture is true, in which case a(n) exists for all n. Note that a(n) > e^A008407(n). See A120935 for the largest prime in the interval.
LINKS
K. Soundararajan, The distribution of prime numbers, arXiv:math/0606408 [math.NT], 2006.
Eric Weisstein's World of Mathematics, k-Tuple Conjecture
FORMULA
This sequence grows superexponentially; a weak lower bound is a(n) >> (log n)^n. It seems that a(n) > n^n. - Charles R Greathouse IV, Apr 18 2012
A lower bound is a(n) > e^A008407(n). a(n) < b*e^A008407(n), for 2 <= n <= 12, b < 1.49. For 9 <= n <= 12, b < 1.0006. a(13) > 701673591209763173865. - Florian Baur, Jul 12 2023 [Corrected by Pontus von Brömssen, Nov 12 2023]
EXAMPLE
a(2)=11 because p=11 is the first prime with log(p) > 2 and 11+2 is prime.
MATHEMATICA
i=1; Table[While[p=Prime[i]; PrimePi[p+Log[p]]-PrimePi[p]+1< n, i++ ]; p, {n, 5}]
PROG
(PARI)
A120934(n) = {
my(v = vector(n, k, prime(k)), i = 1);
while(v[(i - 2) % n + 1] - v[i] > floor(log(v[i])),
v[i] = nextprime(v[(i - 2) % n + 1] + 1);
i = i % n + 1; );
return(vecsort(v)[1]) } \\ Florian Baur, Jul 12 2023
CROSSREFS
KEYWORD
hard,more,nonn,nice
AUTHOR
T. D. Noe, Jul 21 2006
EXTENSIONS
a(12) from Donovan Johnson, Apr 18 2012
STATUS
approved