login
A210865
Triangle of coefficients of polynomials v(n,x) jointly generated with A210864; see the Formula section.
3
1, 2, 2, 6, 7, 3, 12, 21, 18, 5, 20, 61, 75, 42, 8, 30, 151, 262, 231, 93, 13, 42, 323, 829, 1025, 656, 196, 21, 56, 617, 2330, 3935, 3607, 1742, 401, 34, 72, 1081, 5815, 13578, 16849, 11723, 4380, 799, 55, 90, 1771, 13070, 42167, 69475, 65727
OFFSET
1,2
COMMENTS
For n>1, row n starts with n(n-1) and ends with F(n+1), where F=A000045 (Fibonacci numbers).
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....2
6....7....3
12...21...18...5
20...61...75...34...8
First three polynomials v(n,x): 1, 2 + 2x, 6 + 7x + 3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 14;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210864 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210865 *)
CROSSREFS
Sequence in context: A247525 A305295 A174789 * A210861 A062073 A021445
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 28 2012
STATUS
approved