login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210865
Triangle of coefficients of polynomials v(n,x) jointly generated with A210864; see the Formula section.
3
1, 2, 2, 6, 7, 3, 12, 21, 18, 5, 20, 61, 75, 42, 8, 30, 151, 262, 231, 93, 13, 42, 323, 829, 1025, 656, 196, 21, 56, 617, 2330, 3935, 3607, 1742, 401, 34, 72, 1081, 5815, 13578, 16849, 11723, 4380, 799, 55, 90, 1771, 13070, 42167, 69475, 65727
OFFSET
1,2
COMMENTS
For n>1, row n starts with n(n-1) and ends with F(n+1), where F=A000045 (Fibonacci numbers).
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....2
6....7....3
12...21...18...5
20...61...75...34...8
First three polynomials v(n,x): 1, 2 + 2x, 6 + 7x + 3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 14;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210864 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210865 *)
CROSSREFS
Sequence in context: A247525 A305295 A174789 * A210861 A062073 A021445
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 28 2012
STATUS
approved