login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210861
Triangle of coefficients of polynomials v(n,x) jointly generated with A210860; see the Formula section.
3
1, 2, 2, 6, 7, 3, 16, 30, 20, 5, 50, 116, 108, 47, 8, 156, 460, 552, 338, 105, 13, 532, 1842, 2692, 2119, 941, 221, 21, 1856, 7532, 13072, 12574, 7216, 2452, 451, 34, 6876, 31600, 63240, 71860, 50525, 22371, 6035, 895, 55, 26200, 135576, 308568
OFFSET
1,2
COMMENTS
Row n ends with F(n+1), where F=A000045 (Fibonacci numbers).
Column 1: A013989
Alternating row sums: 1,0,2,1,3,2,4,3,5,4,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....2
6....7.....3
16...30....20....5
50...116...108...47...8
First three polynomials v(n,x): 1, 2 + 2x, 6 + 7x + 3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 14;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210860 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210861 *)
CROSSREFS
Sequence in context: A305295 A174789 A210865 * A062073 A021445 A011145
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 28 2012
STATUS
approved