login
A210861
Triangle of coefficients of polynomials v(n,x) jointly generated with A210860; see the Formula section.
3
1, 2, 2, 6, 7, 3, 16, 30, 20, 5, 50, 116, 108, 47, 8, 156, 460, 552, 338, 105, 13, 532, 1842, 2692, 2119, 941, 221, 21, 1856, 7532, 13072, 12574, 7216, 2452, 451, 34, 6876, 31600, 63240, 71860, 50525, 22371, 6035, 895, 55, 26200, 135576, 308568
OFFSET
1,2
COMMENTS
Row n ends with F(n+1), where F=A000045 (Fibonacci numbers).
Column 1: A013989
Alternating row sums: 1,0,2,1,3,2,4,3,5,4,...
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
v(n,x)=(x+n)*u(n-1,x)+x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
2....2
6....7.....3
16...30....20....5
50...116...108...47...8
First three polynomials v(n,x): 1, 2 + 2x, 6 + 7x + 3x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 14;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := (x + n)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210860 *)
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210861 *)
CROSSREFS
Sequence in context: A305295 A174789 A210865 * A062073 A021445 A011145
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 28 2012
STATUS
approved