login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210277
a(n) = (3*n)!/3^n.
5
1, 2, 80, 13440, 5913600, 5381376000, 8782405632000, 23361198981120000, 94566133475573760000, 553211880832106496000000, 4492080472356704747520000000, 49017582114356362204938240000000, 699971072593008852286518067200000000
OFFSET
0,2
LINKS
D. Bevan, D. Levin, P. Nugent, J. Pantone and L. Pudwell, Pattern avoidance in forests of binary shrubs, arXiv preprint arXiv:1510:08036 [math.CO], 2015-2016.
FORMULA
E.g.f.: 1/(1-x^3/3).
a(n) = Product_{i=1..n} (2*binomial(3i,3)). - James Mahoney, Apr 04 2012
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = exp(3^(1/3))/3 + (2/3)*exp(-3^(1/3)/2)*cos(3^(5/6)/2).
Sum_{n>=0} (-1)^n/a(n) = exp(-3^(1/3))/3 + (2/3)*exp(3^(1/3)/2)*cos(3^(5/6)/2). (End)
MATHEMATICA
Table[(3 n)!/3^n, {n, 0, 15}] (* Vincenzo Librandi, Feb 15 2013 *)
PROG
(Magma)[Factorial(3*n)/3^n: n in [0..15]]; // Vincenzo Librandi, Feb 15 2013
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Mar 20 2012
STATUS
approved