login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084939
Pentagorials: n-th polygorial for k=5.
21
1, 1, 5, 60, 1320, 46200, 2356200, 164934000, 15173928000, 1775349576000, 257425688520000, 45306921179520000, 9514453447699200000, 2350070001581702400000, 674470090453948588800000, 222575129849803034304000000
OFFSET
0,3
LINKS
M. A. Asiru, Sequence factorial of g-gonal numbers, Int. J. Math. Educ. Sci. Technol., 44(4) (2012), 579-586.
FORMULA
a(n) = polygorial(n, 5) = (A000142(n)/A000079(n))*A008544(n) = (n!/2^n)*Product_{i=0..n-1} (3*i+2) = (n!/2^n)*3^n*Pochhammer(2/3, n) = (n!/2^n)*3^n*GAMMA(n+2/3)/GAMMA(2/3).
a(n) ~ Gamma(1/3) * 3^(n+1/2) * n^(2*n+2/3) / (2^n * exp(2*n)). - Vaclav Kotesovec, Jul 17 2015
D-finite with recurrence a(n+1) = ((n+1)*(3*n+2)/2)*a(n) = A000326(n+1)*a(n). - Muniru A Asiru, Apr 05 2016
E.g.f.: hypergeom([2/3, 1], [], (3/2)*x). - Robert Israel, Apr 05 2016
MAPLE
a := n->(n!/2^n)*mul(3*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
Table[k! Pochhammer[2/3, k] (3/2)^k, {k, 0, 20}] (* Jan Mangaldan, Mar 20 2013 *)
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[5, #] &, 17, 0] (* Robert G. Wilson v, Dec 17 2016 *)
PROG
(PARI) a(n)=n!/2^n*prod(i=1, n, 3*i-1) \\ Charles R Greathouse IV, Dec 13 2016
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved