OFFSET
0,3
LINKS
Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.
FORMULA
a(n) = polygorial(n, 10) = (A000142(n)/A000079(n))*A084948(n) = (n!/2^n)*Product_{i=0..n-1} (8*i+2) = (n!/2^n)*8^n*Pochhammer(1/4, n) = (n!/2)*4^n*GAMMA(n+1/4)*sqrt(2)*GAMMA(3/4)/Pi.
a(n) = Product_{k=1..n} k*(4k-3). - Daniel Suteu, Nov 01 2017
D-finite with recurrence a(n) -n*(4*n-3)*a(n-1)=0. - R. J. Mathar, May 02 2022
MAPLE
a := n->n!/2^n*product(8*i+2, i=0..n-1); [seq(a(j), j=0..30)];
MATHEMATICA
polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)
PROG
(PARI) a(n)=n!/2^n*prod(i=1, n, 8*i-6) \\ Charles R Greathouse IV, Dec 13 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
STATUS
approved