login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084943 Decagorials: n-th polygorial for k=10. 19
1, 1, 10, 270, 14040, 1193400, 150368400, 26314470000, 6104957040000, 1813172240880000, 670873729125600000, 302564051835645600000, 163384587991248624000000, 104075982550425373488000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..13.

Daniel Dockery, Polygorials, Special "Factorials" of Polygonal Numbers, preprint, 2003.

FORMULA

a(n) = polygorial(n, 10) = (A000142(n)/A000079(n))*A084948(n) = (n!/2^n)*Product_{i=0..n-1} (8*i+2) = (n!/2^n)*8^n*Pochhammer(1/4, n) = (n!/2)*4^n*GAMMA(n+1/4)*sqrt(2)*GAMMA(3/4)/Pi.

a(n) = Product_{k=1..n} k*(4k-3). - Daniel Suteu, Nov 01 2017

D-finite with recurrence a(n) -n*(4*n-3)*a(n-1)=0. - R. J. Mathar, May 02 2022

MAPLE

a := n->n!/2^n*product(8*i+2, i=0..n-1); [seq(a(j), j=0..30)];

MATHEMATICA

polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[polygorial[10, #] &, 14, 0] (* Robert G. Wilson v, Dec 26 2016 *)

PROG

(PARI) a(n)=n!/2^n*prod(i=1, n, 8*i-6) \\ Charles R Greathouse IV, Dec 13 2016

CROSSREFS

Cf. A006472, A001044, A000680, A084939, A084940, A084941, A084942, A084944, A085356.

Sequence in context: A089906 A294515 A287317 * A055055 A222998 A221526

Adjacent sequences: A084940 A084941 A084942 * A084944 A084945 A084946

KEYWORD

easy,nonn

AUTHOR

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 06:53 EST 2022. Contains 358422 sequences. (Running on oeis4.)