The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A067630 Denominators in power series for cos(x)*cosh(x). 5
1, 6, 2520, 7484400, 81729648000, 2375880867360000, 151476660579404160000, 18608907752179801056000000, 4015057936610313875842560000000, 1419041926536183233139035980800000000, 778117449996850714059458989711872000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
cos(x)*cosh(x) = Sum_{n>=0} (-1)^n*x^(4*n)/a(n).
a(n) = (4*n)! / 4^n = A000680(2*n).
E.g.f.: 1/(1-x^4/4). - Mohammad K. Azarian, Mar 20 2012
a(n) = n!*A060706(n). - Bruno Berselli, Mar 21 2012
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = (cos(sqrt(2)) + cosh(sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = cos(1)*cosh(1). (End)
D-finite with recurrence: a(n) - (64*n^4 - 96*n^3 + 44*n^2 - 6*n)*a(n-1) = 0. - Georg Fischer, Aug 17 2021
MAPLE
f:= gfun:-rectoproc({a(n) - (64*n^4-96*n^3+44*n^2-6*n)*a(n-1), a(0)=1}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Aug 17 2021
MATHEMATICA
a[n_] := (4*n)!/4^n; Array[a, 10, 0] (* Amiram Eldar, Jan 18 2021 *)
PROG
(PARI) my(x='x+O('x^50), v=apply(denominator, Vec(cos(x)*cosh(x)))); vector(#v\4, k, v[4*k-3]) \\ Michel Marcus, Jan 18 2021
CROSSREFS
Sequence in context: A279533 A069643 A264801 * A181700 A199147 A097871
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Feb 02 2002
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 15:25 EDT 2024. Contains 373407 sequences. (Running on oeis4.)