login
A008563
Coefficients of series arising in solution of Riccati equation y' = y^2 + x^2.
0
2, 80, 38400, 77875200, 449711308800, 5935407169536000, 155268186793574400000, 7282309435397819596800000, 568366274740400734548787200000, 69683365216674756749626756300800000, 12818556197716658801397242655670272000000, 3408069131098061826431206876376696094720000000
OFFSET
1,1
REFERENCES
G. N. Watson, Bessel Functions, p. 2.
LINKS
H. G. Ellis, Continued fraction solutions of the general Riccati differential equation, Rocky Mountain Journal of Mathematics, Vol. 4, Number 2, 353-356, Spring 1974.
FORMULA
b(0)=b(1)=b(2)=0, b(3)=2, b(n+1) = Sum_{k=1..n} C(n,k)*b(k)*b(n-k), a(n)=b(4n-1).
a(1) = 2, a(n+1) = Sum_{k=1..n} C(4*n+2, 4*k-1) * a(k) * a(n+1-k). - Sean A. Irvine, Apr 01 2018
G.f. as a continued fraction: y(x) = x^3/(3 - x^4/(7 - x^4/(11 - x^4/(15 - ...)))) = 2*x^3/3! + 80*x^7/7! + 38400*x^11/11! + 77875200*x^15/15! + .... See Ellis. - Peter Bala, Jun 03 2019
y = Sum_{n>0} a(n) * x^(4*n-1)/(4*n-1)!. - Michael Somos, Mar 10 2020
EXAMPLE
y = 1/3*x^3 + 1/63*x^7 + 2/2079*x^11 + 13/218295*x^15 + 46/12442815*x^19 + ... - Michael Somos, Mar 10 2020
MATHEMATICA
a[ n_] := a[n] = Which[n<1, 0, n==1, 2, True, Sum[ Binomial[4 n - 2, 4 k - 1] a[k] a[n - k], {k, n - 1}]]; (* Michael Somos, Mar 10 2020 *)
PROG
(PARI) {a(n) = my(v); if( n<1, 0, v=vector(n, m, 2); for(m=2, n, v[m] = sum(k=1, m-1, binomial(4*m-2, 4*k-1) * v[k] * v[m-k])); v[n])}; /* Michael Somos, Mar 10 2020 */
CROSSREFS
Sequence in context: A260659 A351854 A210277 * A059487 A156932 A291331
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, tony(AT)mantis.co.uk (Tony Lezard)
STATUS
approved